连续到离散——从最佳平方逼近到最小二乘拟合

最近期末考试在学习函数逼近章节,有了一些想法和感悟,记录一下。

不论述完整内容,仅表达一些问题看法和思考角度。


基本知识:

①函数逼近是用一个S(x)=f(x),好了那就找这个S(x),采用二范数的逼近方式:

如果f(x)为连续函数,则称为最佳平方逼近;f(x)为离散函数,则称为最小二乘拟合;

最佳平方逼近求积,最小二乘拟合求和。

②在线性代数中,一组线性无关的向量可以构成一组正交基,并张成一个线性空间。


1、首先,我们用一组线性无关的基(basis)张成一个线性空间,\varphi _{0}(x),\varphi _{1}(x),..., \varphi _{n}(x)记为一组线性无关基,张成的空间记为:

\phi =span\left \{ \varphi _{0},\varphi _{1},...,\varphi _{n} \right \}

那么再寻找空间中的一组线性无关基的系数,就构成了我们要找的最佳平方逼近函数S^{*}\left ( x \right )\in \phi,带*表示逼近嘛,近似相等。

所以我们构建的函数表达式如下(基前面带上线性无关向量的系数):

S\left ( x \right )=a_{0}\varphi _{0}\left ( x \right )+a_{1}\varphi _{1}\left ( x \right )+...+a_{n}\varphi _{n}\left ( x \right )=\sum _{j=0}^{n}a_{j}\varphi _{j}\left ( x \right )

2、然后,根据最佳平方逼近二范数的格式:

\left \| f\left ( x \right ) -S^{*}\left ( x \right )\right \|_{2}^{2}=min_{S\left ( x \right )\in \phi }\left \| f\left ( x \right ) -S\left ( x \right )\right \|_{2}^{2}

带个权函数吧:

\left \| f\left ( x \right ) -S\left ( x \right )\right \|_{2}^{2}=\int_{a}^{b}\rho \left ( x \right )\left ( f\left ( x \right )-S\left ( x \right ) \right )^{2}dx=\int_{a}^{b}\rho \left ( x \right )\left ( f\left ( x \right )-\sum _{j=0}^{n}a_{j}\varphi _{j}\left ( x \right ) \right )^{2}dx

上述公式S\left ( x \right )的基我们是已知的(这个基函数很有意思,后面讲),只要求出基前面的系数就好了,那我们求偏导,扔掉无关的权函数,求偏导得到的系数2也可以扔掉,就得到了:

I\left ( a_{0}, a_{1},..., a_{n} \right )=\int_{a}^{b}\rho \left ( x \right )\left ( f\left ( x \right )-\sum _{j=0}^{n}a_{j}\varphi _{j}\left ( x \right ) \right )^{2}dx\

\Rightarrow \frac{\partial I}{\partial a_{k}}=0,k=0,1,...,n

\Rightarrow \left ( f\left ( x \right )-\sum _{j=0}^{n} a_{j}\varphi _{j}\left ( x \right )\right )\varphi _{k}\left ( x \right )dx=0

\Rightarrow \sum _{j=0}^{n}a_{j}\left ( \varphi _{k},\varphi _{j} \right )=\left ( \varphi _{k},f \right ),k=0,1,...,n

3、把上述得到的式子展开就是我们熟知的法方程组了。

总而言之,求最佳平方逼近函数就是在求构成线性空间的一组线性无关正交基的系数啊!


最小二乘拟合:把连续函数f\left ( x \right )换成离散点y_{i},权函数\rho \left ( x \right )换为权系数\omega _{i},得到:

\sum _{i=0}^{m}\omega _{i}\left [ S^{*}\left ( x_{i} \right )-y_{i} \right ]^{2}=min_{S\left ( x \right )}\epsilon \phi \sum _{i=0}^{m}\omega _{i}\left [ S\left ( x_{i} \right )-y_{i} \right ]^{2}

仍然用法方程求解基的系数。其实质就是连续变离散,求积变求和。


关于基函数,一般用\phi表示。

  • 如果用P\left ( x \right )做基函数就是勒让德(Legendre)最佳平方逼近。Legendre最佳平方逼近好的点是他的\left ( P_{k},P_{k} \right )=\frac{2k+1}{2}给算完了,所以只算一个\left ( P_{k},f \right )即可;
  • 如果用T\left ( x \right )做基函数,权函数\rho \left ( x \right )=\frac{1}{\sqrt{1-x^{2}}}就是Chebyshev极数;
  • ……


如果此篇文章对您有帮助,记得评论告诉我:) 您的点赞和收藏是对写作者最大的鼓励~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值