[MIT]Calculus 17|Differential Equations of Growth不同阶数的增长率——逻辑式求解一阶带常数、二阶微分方程

目录

一、逻辑式与公式——求解微分方程(一阶)

1. 逻辑式求解

2. 公式求解

二、二阶微分方程求解(Logistic EQN-逻辑斯蒂方程)

1. 公式求解

2. 逻辑式求解(降阶求解)

三、总结


一、逻辑式与公式——求解微分方程(一阶)

目标:求带常数的一阶微分方程的解:\frac{dy}{dt} =cy+s

1. 逻辑式求解

已知:当等式右边只有一次项时,

\frac{dy}{dt} = cy\Rightarrow y(t) = y(0)e^{ct}

则可以推导,当等式右边有一次项和常数时,

\frac{dy}{dt} =cy+s

我们把y + \frac{s}{c}看作一个整体,(一样的逻辑,我们把等式左边凑成和右边一样,因为常数求导直接为零)

\frac{d}{dt}(y+\frac{s}{c})=c(y+\frac{s}{c})\Rightarrow y(t)+\frac{s}{c} = [y(0)+\frac{s}{c}]e^{ct}

整理一下,

y(t) = -\frac{s}{c} + [y(0)+\frac{s}{c}]e^{ct}

2. 公式求解

已知:求解通式为,

y(t) = y(t)_{particular}+y(t)_{right-set-zero}

①特解:等式右边为零,即

cy+s=0\Rightarrow y=-\frac{s}{c}

②通解:等式右边常数项为零,即

\frac{dy}{dt} = cy\Rightarrow y(t) = Ae^{ct}

这里与传统的不同点在于,A不等于y(0)。根据求解通式,此时有

y(t) = -\frac{s}{c}+ Ae^{ct}

把t=0带入通式,求A,

y(0)=-\frac{s}{c}+A\Rightarrow A=y(0)+\frac{s}{c}

整理一下,

y(t) = -\frac{s}{c} + [y(0)+\frac{s}{c}]e^{ct}

结论:逻辑式和公式可以得到一样的结果。

二、二阶微分方程求解(Logistic EQN-逻辑斯蒂方程)

目标:求二阶(非线性)微分方程的解:\frac{dP(t)}{dt}=cP-sP^{2}

1. 公式求解

特解:等式右边为零,即

cP = sP^{2} \Rightarrow P =\frac{c}{s}

非线性方程很难搞,我们需要特殊的方式解答他们。。

2. 逻辑式求解(降阶求解)

y = \frac{1}{P},对y求导

\frac{dy}{dt} = -\frac{1}{P^{2}}\frac{dP}{dt}\overset{\frac{dP}{dt}=cP-sP^{2}}{\rightarrow}

\frac{dy}{dt}=-\frac{cP-sP^{2}}{P^{2}}=s-\frac{c}{p}=s-cy

发现上式为关于y的一阶微分方程,根据一、我们可以求得,

y(t) = \frac{s}{c} + [y(0)-\frac{s}{c}]e^{-ct}

\frac{1}{P(t)} = \frac{s}{c} + [\frac{1}{P(0)}-\frac{s}{c}]e^{-ct}

P(t) =[\frac{s}{c} + [\frac{1}{P(0)}-\frac{s}{c}]e^{-ct}]^{-1}

至此,我们得到了二阶微分方程的解。

三、总结

通过掌握一阶微分方程解的逻辑,可以推得一阶微分带常数的方程的解;

通过对二阶微分方程降阶,可以用一阶微分方程求解的逻辑求得二阶微分方程的解。



如果此篇文章对您有帮助,记得评论告诉我(●'◡'●)

您的点赞和收藏是对写作者最大的鼓励!

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
分数微分方程是一类常微分方程的扩展,其中数为非整数。Matlab提供了一些工具和函数来解决分数微分方程。 在Matlab中,可以使用Fractional Calculus Toolbox来处理分数微分方程。该工具箱提供了一些函数和算法,用于求解分数微分方程的初值问题和边值问题。 要使用Fractional Calculus Toolbox,首先需要安装该工具箱。然后,可以使用toolbox中的函数来定义和求解分数微分方程。 以下是一个示例,演示如何使用Matlab求解分数微分方程: 1. 定义分数微分方程: 首先,需要定义一个匿名函数来表示分数微分方程。例如,考虑以下的分数微分方程: `D^alpha y(t) = f(t, y(t))` 其中,`D^alpha`表示分数导数算子,`alpha`为非整数。`f(t, y(t))`为给定的函数。 在Matlab中,可以使用`fracdiff`函数来定义分数导数算子。例如,对于`alpha=0.5`的情况,可以定义如下: `D = fracdiff('Caputo', 0.5);` 然后,可以使用该算子来定义分数微分方程: `eqn = @(t, y) D(y) - f(t, y);` 2. 求解分数微分方程: 使用Matlab的求解器函数(如`ode45`、`ode23`等)来求解分数微分方程。例如,可以使用`ode45`函数进行数值求解: `[t, y] = ode45(eqn, tspan, y0);` 其中,`tspan`为时间范围,`y0`为初始条件。 以上是使用Matlab求解分数微分方程的基本步骤。你可以根据具体的问题和需要,调整和扩展这些步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值