[MIT]微积分重点 第十六课 关于增长的微分方程 学习笔记

本节课讲的是关于增长的微分方程。

1.最简单的增长微分方程

为:
d ⁡ y d ⁡ t = c y y ( 0 ) \frac{\operatorname{d}y}{\operatorname{d}t} = cy\quad y(0) dtdy=cyy(0)
解为:
y ( t ) = y ( 0 ) e c t y(t) = y(0)\rm {e}^{ct} y(t)=y(0)ect
这里讲的比较抽象,可以用个例子帮助理解下。 y ( t ) y(t) y(t) 表示储蓄账户里的钱, c c c 为年利率, y ( 0 ) y(0) y(0) 为第 0 0 0 年存入的钱。如果年利率 c = 3 % c=3\% c=3% y ( 0 ) = 10000 y(0)=10000 y(0)=10000 ,那么解为: y ( t ) = 10000 e 0.03 t y(t) = 10000\rm {e}^{0.03t} y(t)=10000e0.03t ,第 1 1 1 年账户里的钱为 y ( 1 ) = 10000 e 0.03 × 1 = 10304.545 y(1) = 10000\rm {e}^{0.03\times 1} = 10304.545 y(1)=10000e0.03×1=10304.545 ,第 5 5 5 年账户里的钱为 y ( 5 ) = 10000 e 0.03 × 5 = 11618.342 y(5) = 10000\rm {e}^{0.03\times 5} = 11618.342 y(5)=10000e0.03×5=11618.342 。可能有人会奇怪,为什么第 1 1 1 年账户里的钱不是 10000 × ( 1 + 0.03 ) = 10300 10000\times (1+0.03) = 10300 10000×(1+0.03)=10300 。如果以月计算一次利息,月利率为 0.03 / 12 = 0.0025 0.03/12=0.0025 0.03/12=0.0025 ,第 1 1 1 年账户里的钱变为 10000 × ( 1 + 0.0025 ) 12 = 10304.160 10000\times (1+0.0025)^{12} = 10304.160 10000×(1+0.0025)12=10304.160 。如果计算利息的时间为无限短,那么利息总是有个极限,前面求的结果就是这个极限,也就是无限复利的结果(第四课的第4小节有部分说明)。

2.将最简单的微分方程加上资源项

为:
d ⁡ y d ⁡ t = c y + s y ( 0 ) \frac{\operatorname{d}y}{\operatorname{d}t} = cy+s\quad y(0) dtdy=cy+sy(0)
解为:
d ⁡ d ⁡ t ( y + s c ) = c ( y + s c ) y ( t ) + s c = ( y ( 0 ) + s c ) e c t \frac{\operatorname{d}}{\operatorname{d}t}(y+\frac{s}{c}) = c(y+\frac{s}{c}) \\[2ex] y(t) + \frac{s}{c} = (y(0) + \frac{s}{c})\rm {e}^{ct} \\[2ex] dtd(y+cs)=c(y+cs)y(t)+cs=(y(0)+cs)ect
s > 0 s>0 s>0 时为存钱;当 s < 0 s<0 s<0 时为取钱。
或者也可以通过特解加上通解的方式求得解,如下图所示:
在这里插入图片描述

3.用于人口增长的LOGISTIC模型

为:
d ⁡ P d ⁡ t = c P − s P 2 \frac{\operatorname{d}P}{\operatorname{d}t} = cP - sP^2 dtdP=cPsP2
C C C 为人口增长率(出生率减去死亡率); s P 2 sP^2 sP2 表示人口和人口之间的拥挤影响。
y = 1 / P y=1/P y=1/P ,解为:
d ⁡ y d ⁡ t = d ⁡ y d ⁡ P d ⁡ P d ⁡ t = − P 2 ( c P − s P 2 ) = − ( c p − s ) = − ( c y − s ) y ( t ) − s c = ( y ( 0 ) − s c ) e − c t \frac{\operatorname{d}y}{\operatorname{d}t}=\frac{\operatorname{d}y}{\operatorname{d}P}\frac{\operatorname{d}P}{\operatorname{d}t}=-P^2(cP-sP^2)=-(\frac{c}{p}-s)=-(cy-s) \\[2ex] y(t) - \frac{s}{c} = (y(0) - \frac{s}{c})\rm {e}^{-ct} \\[2ex] dtdy=dPdydtdP=P2(cPsP2)=(pcs)=(cys)y(t)cs=(y(0)cs)ect
代入 y = 1 / P y=1/P y=1/P
1 P ( t ) − s c = ( 1 P ( 0 ) − s c ) e − c t 1 P ( t ) = ( 1 P ( 0 ) − s c ) e − c t + s c P ( t ) = [ ( 1 P ( 0 ) − s c ) e − c t + s c ] − 1 \begin{aligned} \frac{1}{P(t)} - \frac{s}{c} = (\frac{1}{P(0)} - \frac{s}{c})\rm {e}^{-ct} \\[2ex] \frac{1}{P(t)} = (\frac{1}{P(0)} - \frac{s}{c})\rm {e}^{-ct} + \frac{s}{c} \\[2ex] P(t) = \left[(\frac{1}{P(0)} - \frac{s}{c})\rm {e}^{-ct} + \frac{s}{c}\right]^{-1} \\[2ex] \end{aligned} P(t)1cs=(P(0)1cs)ectP(t)1=(P(0)1cs)ect+csP(t)=[(P(0)1cs)ect+cs]1
t → ∞ t\rightarrow \infty t 时, P → c / s P\rightarrow c/s Pc/s ,达到稳态; c / ( 2 s ) c/(2s) c/(2s) 为拐点。图像如下面所示:
在这里插入图片描述

4.捕食-猎物模型

为:
d ⁡ u d ⁡ t = − c u + s u v d ⁡ v d ⁡ t = c v − s u v \frac{\operatorname{d}u}{\operatorname{d}t} = -cu + suv \\[2ex] \frac{\operatorname{d}v}{\operatorname{d}t} = cv - suv \\[2ex] dtdu=cu+suvdtdv=cvsuv
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值