数学建模之层次分析法

层次分析法

     建模比赛中最基础的模型之一,也是最常用到模型,其主要用于解决

评价类问题。
一、解决评价类问题,大家首先要想到以下三个问题:
① 我们评价的目标是什么?
② 我们为了达到这个目标有哪几种可选的方案?
③ 评价的准则或者说指标是什么?(我们根据什么东西来评价好坏)

二、根据这三个问题,我们可以将模型分为:目标层、准则层、方案层
层次分析法可分为四个步骤建立:
第一步:标度确定和构造判断矩阵;
第二步:特征向量,特征根计算和权重计算;
第三步:一致性检验分析;(当矩阵本身就一致矩阵则无需进行一致检验)
第四步:分析结论。

注:一致矩阵各行(各列)之间成倍数关系,可由此观察是否为一致矩阵。
下面通过一道例题来讲解:

三、例题如下:
在这里插入图片描述
首先确定层次分析模型
即分别找出目标层、准侧层、方案层
在这里插入图片描述
对准则层做出判断矩阵
☆☆做出判断矩阵后还需要对其进行一致性检验

在这里插入图片描述
在这里插入图片描述

同理对相应目标层建立判断矩阵并对其进行一致性检验
在这里插入图片描述
根据判断矩阵求出相应权重
☆☆方法:算术平均法、几何平均法、特征值法。(具体求解步骤见另一章节)
在这里插入图片描述
计算最终得分并下结论
在这里插入图片描述

步骤总结:
①首先建立层析分析模型,构造准则层判断矩阵,算出权重。
②构造相应的目标层判断矩阵,计算相应权重得出排名。
③最后结合所有权重算出最终得分。

注:1.只要不满足一致矩阵都需要进行一致性检验。
2.有时候各层还可以华为相应的子层,同理算出每层的权重即可

若有疑惑,欢迎在下方留言,我会第一时间回复哒
就到这里啦,谢谢大家❥(^_-)

层次分析法(Analytic Hierarchy Process,AHP)是一种系统性的层次结构分析方法,可以用于处理多目标决策问题。下面是使用AHP进行画图及比较矩阵的步骤: 1.建立层次结构:将问题分解为若干层次,确定层次之间的关系,形成一个层次结构。 2.构造比较矩阵:对于同一层次的各个因素进行两两比较,得到一个比较矩阵。比较矩阵的元素为两个因素之间的相对重要性,通常采用1-9的尺度进行评价,其中1表示两个因素同等重要,9表示一个因素比另一个因素重要程度是另一个因素的9倍。 3.计算权重:通过计算比较矩阵的特征向量,可以得到每个因素的权重,即其在整个层次结构中的重要程度。特别地,对于AHP来说,特征向量需要进行归一化处理,使其元素和为1。 4.一致性检验:检验比较矩阵的一致性,即比较矩阵是否符合一定的数学规律。如果比较矩阵的一致性不好,需要进行调整,直到比较矩阵的一致性得到满意的结果。 5.绘制层次结构图:根据层次结构及各因素的权重,绘制出层次结构图。 6.进行灵敏度分析:对于各因素的权重进行不同的假设,分析结果的变化情况,以得到对于不同假设情况下的最优决策。 需要注意的是,AHP方法在实际应用中需要进行多次比较矩阵的构造,每次构造的比较矩阵都需要进行一致性检验。此外,选择合适的尺度和正确的比较是比较矩阵构造的关键。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值