第一章作业
1、证明在 n 阶连通图中
(1)至少有 n-1 条边。
(2)如果边数大于 n-1,则至少有一条闭迹。
(3)如恰有 n-1 条边,则至少有一个奇度点。
(1)证明:
若对 ∀ v ∈ V ( G ) \forall v \in V(G) ∀v∈V(G), 有 d ( v ) ≥ 2 d(v)≥2 d(v)≥2, 则: 2 m = ∑ d ( v ) ≥ 2 n ⇒ m ≥ n > n − 1 2m= \sum d(v) ≥ 2n \Rightarrow m ≥ n > n-1 2m=∑d(v)≥2n⇒m≥n>n−1;
若G中有1度顶点,对顶点数n作数学归纳。
当 n=2 时,G显然至少有一条边,结论成立。设当n = k时,结论成立,即至少有 k - 1条边
当 n=k+1 时,设去掉任一一个一度顶点 v v v 后,总度数为: d ( V ) − 1 d(V)-1 d(V)−1,则剩下的图 G − v G-v G−v 满足 n = k 的情况,是 k k k 阶连通图,因此至少有 k − 1 k-1 k−1 条边,将次一度顶点还原后,所以至少有 k − 1 + 1 = k k - 1 + 1 = k k−1+1=k 条边。
(2) 由于连通,考虑 v 1 → v 2 → … → v n \mathrm{v_{1} \to v_{2}\to\ldots\to v_{n}} v1→v2→…→vn 的路,则长为 n − 1 n-1 n−1, 但图 G G G 的边数大于 n − 1 n-1 n−1, 因此存在 v i , v j \mathrm{v_{i}}, \mathrm{v_{j}} vi,vj, 使得 v i \mathrm{v_{i}} vi adj v j \mathrm{v_{j}} vj, 这样, v i → v i + 1 → … → v j \mathrm{v_{i}\to v_{i + 1}\to\ldots\to v_{j}} vi→vi+1→…→vj 并上 v i v j \mathrm{v_{i}v_{j}} vivj 构成一条闭迹,即图 G G G中有闭迹。
(3)若不然,没有奇度点,也即对 ∀ v ∈ V ( G ) \forall v \in V(G) ∀v∈V(G), 有 d ( v ) ≥ 2 d(v) ≥ 2 d(v)≥2, 则: 2 m = ∑ d ( v ) ≥ 2 n ⇒ m ≥ n > n − 1 2m= \sum d(v) ≥ 2n \Rightarrow m ≥ n > n-1 2m=∑d(v)≥2n⇒m≥n>n−1,与已知矛盾。
2、设G是n阶完全图,试问
(1)有多少圈?
(2)包含
G
G
G中某边
e
e
e的圈有多少?
(3)任意两点间有多少条路?
解:
(1)对
n
n
n 阶完全图中的任意
k
(
3
≤
k
≤
n
)
k (3≤k ≤n)
k(3≤k≤n) 个不同顶点,都可以构成一个长度为
k
k
k 的圈。所以
n
n
n 阶完全图中不同的圈的个数为:
( 3 n ) + ( 4 n ) + ⋯ + ( n n ) = 2 n − n 2 + n 2 − 1 \begin{pmatrix}3\\n\end{pmatrix}+\begin{pmatrix}4\\n\end{pmatrix}+\cdots+\begin{pmatrix}n\\n\end{pmatrix}=2^n-\frac{n^2+n}{2}-1 (3n)+(4n)+⋯+(nn)=2n−2n2+n−1
(2)要求圈包含某边
e
e
e,则不同圈的个数为:(要求包含圈 e,因此将 e 两端的顶点选中,在剩余的
n
−
2
n - 2
n−2 个顶点中至少选择一个即可)
(
1
n
−
2
)
+
(
2
n
−
2
)
+
⋯
+
(
n
−
2
n
−
2
)
=
2
n
−
2
−
1
\begin{pmatrix}1\\n-2\end{pmatrix}+\begin{pmatrix}2\\n-2\end{pmatrix}+\cdots+\begin{pmatrix}n-2\\n-2\end{pmatrix}=2^{n-2}-1
(1n−2)+(2n−2)+⋯+(n−2n−2)=2n−2−1
(3)任意两点间的不同路的条数为:(路表示途径的顶点互不相同,依次两次之间不经过任何其他点,即剩余 n - 2 个点选 0 个,为 1 中方式,剩余 n - 2 个点选 1 个,选 2 个 … )
1
+
(
1
n
−
2
)
+
(
2
n
−
2
)
+
⋯
+
(
n
−
2
n
−
2
)
=
2
n
−
2
1+\begin{pmatrix}1\\n-2\end{pmatrix}+\begin{pmatrix}2\\n-2\end{pmatrix}+\cdots+\begin{pmatrix}n-2\\n-2\end{pmatrix}=2^{n-2}
1+(1n−2)+(2n−2)+⋯+(n−2n−2)=2n−2
3、证明图1-27中的两图不同构:

4、证明图1-28中的两图是同构的

证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射
f
:
f
(
v
i
)
→
u
i
(
1
≤
i
≤
10
)
\mathrm{f:f(v_{i})\to u_{i}}\quad(1\leq i\leq10)
f:f(vi)→ui(1≤i≤10)
容易证明,对
∀
v
i
v
j
∈
E
(
(
a
)
)
,
有
f
(
v
i
v
j
)
=
u
i
u
j
∈
E
(
(
b
)
)
(
1
≤
i
≤
10
,
1
≤
j
≤
10
)
\forall\operatorname{v_{i}v_{j}}\in\operatorname{E}((\mathbf{a})),{\text{有}}\operatorname{f}(\operatorname{v_{i}v_{j}}){=}\operatorname{u_{i}u_{j}}\in\operatorname{E}((\mathbf{b}))(1{\le}\operatorname{i}\leq10,1{\le}j{\le}10)
∀vivj∈E((a)),有f(vivj)=uiuj∈E((b))(1≤i≤10,1≤j≤10)
由图的同构定义知,图 1-27 的两个图是同构的。(比如(a)中
v
6
\mathrm{v_6}
v6 与
v
9
\mathrm{v_9}
v9 相连,且
v
6
\mathrm{v_6}
v6 与
v
1
\mathrm{v_1}
v1,
v
8
\mathrm{v_8}
v8 相邻,
v
9
\mathrm{v_9}
v9 与
v
7
\mathrm{v_7}
v7,
v
4
\mathrm{v_4}
v4 相邻, 对应与(b)中
u
6
\mathrm{u_6}
u6 与
u
9
\mathrm{u_9}
u9 相连,且
u
6
\mathrm{u_6}
u6 与
u
1
\mathrm{u_1}
u1,
u
8
\mathrm{u_8}
u8 相邻,
u
9
\mathrm{u_9}
u9 与
u
7
\mathrm{u_7}
u7,
u
4
\mathrm{u_4}
u4 相邻)
5、证明:四个顶点的非同构简单图有11个。
注意下面的情况两两是同构的

6、设 G 是具有 m 条边的 n 阶简单图。证明: m = ( n 2 ) m=\begin{pmatrix}n\\2\end{pmatrix} m=(n2)当且仅当G是完全图。
证明 必要性 若 G 为非完全图, 则 ∃ v ∈ V ( G ) , \exists\mathrm{v}\in\mathrm{V}(\mathrm{G}), ∃v∈V(G), d ( v ) < n − 1 ⇒ Σ d ( v ) < n ( n − 1 ) ⇒ 2 m < n ( n − 1 ) ⇒ m < n ( n − 1 ) / 2 = ( n 2 ) , \mathrm{d(v)<n-1\Rightarrow\Sigma d(v)<n(n-1)\Rightarrow2m<n(n-1)} \Rightarrow\mathrm{m<n(n-1)/2=}{\binom{n}{2}}, d(v)<n−1⇒Σd(v)<n(n−1)⇒2m<n(n−1)⇒m<n(n−1)/2=(2n), 与已知相矛盾。( d ( v ) < n − 1 \mathrm{d(v)<n-1} d(v)<n−1 是因为完全图每个点有, d ( v ) = n − 1 \mathrm{d(v) = n-1} d(v)=n−1,而非完全图,所以 d ( v ) < n − 1 \mathrm{d(v)<n-1} d(v)<n−1)
充分性 若 G G G为完全图,则 2 m = ∑ d ( v ) = n ( n − 1 ) ⇒ m = ( n 2 ) . 2\mathrm{m=\sum d(v)=n(n-1)\Rightarrow m=}\begin{pmatrix}n\\2\end{pmatrix}. 2m=∑d(v)=n(n−1)⇒m=(n2).
7、证明
(1) m ( K l , n ) = l n m(K_{l,n})=ln m(Kl,n)=ln
证明: (1) K l , n K_{l,n} Kl,n 的总度数为 2 l n 2ln 2ln( K l , n K_{l,n} Kl,n 表示完全偶图,其中一部分 l l l 个顶点,另一部分 n n n 个顶点,总边数即为 l n ln ln), 所以, m ( K l , n ) = l n m(K_{l,n})=ln m(Kl,n)=ln。
(2)若 G G G是具有 m m m条边的 n n n阶简单偶图,则 m ≤ ⌊ n 2 4 ⌋ m\leq\left\lfloor\frac{n^2}4\right\rfloor m≤⌊4n2⌋
直接说明正则偶图的最大边数为 n 1 n 2 n_1n_2 n1n2, n 1 + n 2 = n n_1 + n_2 = n n1+n2=n,配个完全平方即可证明
8、设 △ \bigtriangleup △ 和 δ \delta δ 是简单图G的最大度和最小度,则 δ ⩽ 2 m / n ⩽ △ \delta\leqslant2m/n\leqslant\bigtriangleup δ⩽2m/n⩽△
2 m = ∑ v ∈ V d ( v ) ≥ n δ ⇒ δ ≤ 2 m n 2m=\sum_{v \in V}d(v)\geq n\delta\Rightarrow\delta\leq\frac{2m}{n} 2m=v∈V∑d(v)≥nδ⇒δ≤n2m
2 m = ∑ v ∈ V d ( v ) = Δ n ⇒ Δ ≥ 2 m n 2m=\sum_{v \in V}d(v)=\Delta n\Rightarrow\Delta\geq\frac{2m}{n} 2m=v∈V∑d(v)=Δn⇒Δ≥n2m
∴ δ ≤ 2 m n ≤ Δ \therefore\delta\leq{\frac{2m}{n}}\leq\Delta ∴δ≤n2m≤Δ
9、证明:若 k k k 正则偶图具有二分类 V = V 1 ∪ V 2 , V=V_{1}\cup V_{2}, V=V1∪V2,,则 ∣ V 1 ∣ = ∣ V 2 ∣ |V_{1}| = |V_{2}| ∣V1∣=∣V2∣
证明 由于 G G G为 k k k正则偶图(所有顶点的度为 k,只有所有顶点被平分到两个集合,才能满足 每个顶点度为 k k k 即正则偶图),所以, k ∣ V 1 ∣ = m = k ∣ V 2 ∣ ⇒ ∣ V 1 ∣ = ∣ V 2 ∣ . k|V_1| = m = k|V_2| \Rightarrow |V_1| = |V_2|. k∣V1∣=m=k∣V2∣⇒∣V1∣=∣V2∣.
10、证明:由两人或更多个人组成的人群中,总有两人在该人群中恰好有相同的朋友数。
证明 将人用图的顶点表示,图的两顶点邻接当且仅当人群中的两人相认识,于是,问题转化为:证明在任意一个简单图中必有一对度数相等的顶点。
若图 G G G 为连通单图,则对 ∀ v ∈ V ( G ) \forall v∈V(G) ∀v∈V(G), 有 1 < d ( v ) ≤ n − 1 1<d(v)≤n-1 1<d(v)≤n−1, 因此, n n n 个顶点中必存在两个顶点,其度数相同 (鸽笼原理); 若 G G G 为非连通图。设 G 1 G_1 G1 为阶数 n n n 的连通分支,则 ∀ v ∈ V ( G 1 ) \forall v∈V(G_1) ∀v∈V(G1)有 1 < d ( v ) ≤ n 1 − 1 1<d(v)≤n_1-1 1<d(v)≤n1−1,于是在 G 1 G_1 G1 中必存在两个顶点,其度数相同。
11、证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。
证明 由于
7
7
7 个顶点的简单图的最大度不会超过6,因此序列 (7,6,5,4,3,3,2) 不是图序列;
(6,6,5,4,3,3,1) 是图序列
⇔
\Leftrightarrow
⇔ 然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。
12、证明:若 δ ≥ 2 δ≥2 δ≥2,则 G G G包含圈。
证明1 不失一般性,只就连通图证明即可。设 V ( G ) = { v 1 , v 2 , … , v n } V(G)=\{v_1,v_2,…,v_n\} V(G)={v1,v2,…,vn}, 对于 G G G中的一条最长路 P = v 1 v 2 … v k P = v_1v_2…v_k P=v1v2…vk(首先路是不含重复顶点的,考虑一下不是路,若含重复顶点,则取重复顶点及其之间的点,即构成一个圈), 因为 δ ≥ 2 δ≥2 δ≥2,那么除了与 v 1 v_1 v1 相邻的 v 2 v_2 v2 之外,至少还有一个邻接顶点 v ′ v{'} v′ ,若 v ′ v{'} v′ 不在最长路上,则可构造出比 P P P 更长的路 v ′ v 1 ∪ v 1 v 2 . . . v k v{'}v_1 \cup v_1 v_2...v_k v′v1∪v1v2...vk ,与 P P P 是最长路矛盾,因此 v ′ v{'} v′ 一定在最长路 P P P 中,因此 v 1 v 2 . . . v ′ v 1 v_1 v_2...v{'}v_1 v1v2...v′v1 是圈 G G G 的一个圈。(最长路是指不重复顶点的路,顶点可以重复就是无限条了)
证明2: 不失-般性,只就连通图证明即可。因为
δ
≥
2
δ≥2
δ≥2,由图
G
G
G中
v
1
v_1
v1到
v
k
v_k
vk的路可以向前延伸,又由于
G
G
G只是有限个顶点,因此延伸到某一后再往下延伸,必然要与走过的顶点相重合,
这样就形成了圈。
证明3: 反证法:不失-般性,设 G G G为 n n n阶连通图,若 G G G没有圈,那么 G G G是树,于是 m ( G ) = n − 1 m(G)=n- 1 m(G)=n−1 , 但是由握手定理: 2 m = ∑ v ∈ V ( G ) d ( v ) ≥ n δ = 2 n 2m=\sum_{v\in V(G)}d(v)\geq n\delta=2n 2m=∑v∈V(G)d(v)≥nδ=2n,得到 m ( G ) ≥ n > n − 1 m(G)\geq n>n-1 m(G)≥n>n−1, 从而矛盾.
13、证明:若 G G G是简单图且 δ ≥ 2 δ≥2 δ≥2,则 G G G包含长至少是 δ + 1 δ+1 δ+1的圈。
证明 设 v 0 v 1 … v k v_0v_1…v_k v0v1…vk 为 G G G 中一条最长路,则 v 0 v_0 v0 的邻接顶点除 v 1 v_1 v1 外,还有 δ − 1 δ-1 δ−1 个,且必须也在最长路上(见习题 12),否则,会构建出新的更长路。设与 v 0 v_0 v0 邻接,且脚标最大的点为 v t v_t vt ,显然,我们有 t ≥ δ t ≥ δ t≥δ,于是 v 0 v 1 . . . v t ∪ v t v 0 v_0 v_1 ... v_t \cup v_tv_0 v0v1...vt∪vtv0 是一个圈长至少为 δ + 1 δ+1 δ+1 的圈
17、证明:若 G G G 不连通,则 G ˉ \bar{G} Gˉ 连通。
证明 对 ∀ u , v ∈ V ( G ˉ ) , \forall u,v \in V(\bar{G}), ∀u,v∈V(Gˉ), 若 u u u 与 v v v 属于 G G G 的不同连通分支,显然 u u u 与 v v v 在 G ˉ \bar{G} Gˉ 中连通; 若 u u u 与 v v v 属于 G G G 的同一连通分支,设 w w w 为 G G G 的另一个连通分支中的一个顶点,则 u u u 与 w , v w,v w,v 与 w w w 分别在 G ˉ \bar{G} Gˉ 中连通,因此, u u u 与 v v v 在 G ˉ \bar{G} Gˉ 中连通。
18、证明:若 e ∈ E ( G ) e{\in}E(G) e∈E(G),则 w ( G ) ⩽ ω ( G − e ) ⩽ ω ( G ) + 1. w(G) {\leqslant}\omega(G{-}e){\leqslant}\omega(G){+}1. w(G)⩽ω(G−e)⩽ω(G)+1.
证明 若 e e e 为 G G G 的割边,则 w ( G − e ) = w ( G ) + 1 w(G-e)=w(G)+1 w(G−e)=w(G)+1, 若 e e e 为 G G G 的非割边,则 w ( G − e ) = w ( G ) w(G-e)=w(G) w(G−e)=w(G), 所以,若 e ∈ E ( G ) e\in E(G) e∈E(G), 则 ω( G ) ⩽ ω ( G − e ) ⩽ ω ( G ) + 1 G)\leqslant\omega(G-e)\leqslant\omega(G)+1 G)⩽ω(G−e)⩽ω(G)+1。
19、证明:若 G G G 连通且 G G G 的每个顶点的度均为偶数,则对于任意的 v ∈ V ( G ) , w ( G − v ) ≤ d ( v ) / 2 v∈V(G), w(G-v)≤d(v)/2 v∈V(G),w(G−v)≤d(v)/2 成立。
证明: 设 C C C 为 w ( G − v ) w(G-v) w(G−v) 的一连通分支,则在 G G G 中, v v v 有偶数条边伸向 C C C,若不然, C C C 中奇度点个数为奇数。因此, v v v 至少有两条边伸向 C C C,有 w ( G − v ) ≤ d ( v ) / 2 w(G-v)≤d(v)/2 w(G−v)≤d(v)/2 成立。
22.证明:若 G G G 是至少有三个点的简单连通图但不是完全图,则 G G G有三个顶点 u , v u, v u,v和 w w w,使得 u v , v w ∈ E uv , vw \in E uv,vw∈E,而 u w ∉ E uw ∉ E uw∈/E。
- 4 个
- 2 m 2^m 2m
- n ( n − 1 ) 4 \frac{n(n-1)}{4} 4n(n−1)
- n k 2 \frac{nk}{2} 2nk
- 11
- 自补图个数 2 个如下
-
只需判断序列和是不是偶数
-
如果是判断是否为图序列,或者一个简单图度序列,则需要进一步判断其最大度应该为序列长度 - 1(即不能超过完全图的边长)。如果满足进一步通过那个充要条件看是否可图
答案: C
- B:奇数
- C:最大度超过
- D:会发现要是存在重边,要么存在自环
答案: A
- n ( n − 1 ) 2 − n k 2 \frac{n(n - 1)}{2} - \frac{nk}{2} 2n(n−1)−2nk 用完全图去减
- n − 1 − δ n - 1 - \delta n−1−δ
- n − 1 − Δ n - 1 - \Delta n−1−Δ
- 握手定理: 2 m = 3 n , 2 n = m + 3 , n = 6 , m = 9 2m = 3n,2n = m + 3, n = 6, m = 9 2m=3n,2n=m+3,n=6,m=9
- 握手定理,顶点和列方程
- A, K 5 K_5 K5 的两个自补图都连通
- C,离散数学中的概念
- D,简单图,至少连个顶点的度数相同
答案:AD
- C
- A k A^k Ak 中 a i j ( k ) a_{ij}^{(k)} aij(k) 这个元素
- n − 1 n - 1 n−1
- 对角线之和/2 = 6
- n 2 4 \frac{n^2}{4} 4n2 向下取整















答: 根据 定理2 一个图是偶图当且当它不包含奇圈。可知,
1.不是(含有奇圈) 2.是 3.是(没有圈) 4.不是




所以, v 1 v_1 v1到 v 3 v_3 v3的途径长度为2和3的条数分别为:3和4。

先把第二列到最后一列的元素加到第一列,然后提取出 λ − n + 1 λ-n+1 λ−n+1,再通过分别将第一列所有1加到其他各列,这样,除了第一列的元素全为 1,剩下主对角线只剩下 n − 1 n-1 n−1 个 λ + 1 λ+1 λ+1,利用第一行进行代数余子式来求解最终的行列式,通过代数余子式转换后,实际上最终对角线元素相乘即可

E E E 是主对角线为 1 的单位矩阵


第二章
1. 证明:非平凡树的最长路的起点和终点均是1度的。
证明: 设 T T T为非平凡树且 P P P是 T T T的最长路。若 P P P的一个端点 u u u不是一度点,即 d ( u ) ≥ 2 d(u)≥2 d(u)≥2,则除了 P P P 上的邻点外, u u u 还有一个邻点 v v v。若 v ∉ V ( P ) v ∉V(P) v∈/V(P),则 P P P加上点 v v v后,得到一条更长的路,这与 P P P是最长路矛盾; 若 v ∈ V ( P ) v∈V(P) v∈V(P), 则得到一个圈,这与 T T T是树矛盾!证毕。
2. 证明:每棵恰有两个1度顶点的树均是路。
至少存在一个度不小于 3 的点,即内部点
3. 若 G G G 是树且 △ ≥ k △≥k △≥k,则 G G G 至少有 k k k 个 1 1 1 度顶点。
证明: 若不然,设 G G G 至多有 k − 1 k- 1 k−1个 1 度顶 点 。由于 Δ ≥ k \Delta \geq k Δ≥k ,于是,由握手定理得: 2 m ( G ) = ∑ v ∈ V ( G ) d ( v ) ≥ k − 1 + k + 2 ( n − k ) = 2 n − 1 > 2 n − 2 2m(G)=\sum_{v\in V(G)}d(v)\geq k-1+k+2(n-k)=2n-1>2n-2 2m(G)=∑v∈V(G)d(v)≥k−1+k+2(n−k)=2n−1>2n−2。即 m > n − 1 m>n-1 m>n−1,这与树的定义矛盾。证毕。
4. 证明:若 G G G 是森林且恰有 2 k k k 个奇度点,则在 G G G 中有 k k k 条边不重的路 P 1 , P 2 , ⋯ , P k P_1,P_2,\cdots,P_k P1,P2,⋯,Pk 使得 E ( G ) = E ( P 1 ) ∪ E ( P 2 ) ∪ ⋯ ∪ E ( P k ) E(G)=E(P_1)\cup E(P_2)\cup\cdots\cup E(P_k) E(G)=E(P1)∪E(P2)∪⋯∪E(Pk)

5. 证明:正整数序列 d 1 , d 2 , ⋯ , d k d_1,d_2,\cdots,d_k d1,d2,⋯,dk 是一棵树的度序列当且仅当 ∑ i = 1 n d i = 2 ( n − 1 ) \sum_{i=1}^nd_i=2(n-1) ∑i=1ndi=2(n−1)
实际上就是去掉一个叶节点来考虑这个问题。
7. 设 G G G 连通且 e ∈ E ( G ) e \in E(G) e∈E(G)。证明:(1) e e e 在 G G G 的每棵生成树中当且仅当 e e e 是 G G G 的割边。(2) e e e 不在 G G G 的任一生成树中当且仅当 e e e 是 G G G 的自环。
9. 证明:顶点度数为偶数的连通图本身可构成一个包含所有边的回路(回路即闭迹:指边不重复)。
证明: 设 G G G为满足条件的图。对 G G G的边数作归纳。
由 G G G连通且每个点的度都为偶数,因此 G G G包含一个圈 C C C (第一章习题12)。若 C C C包含 G G G的所有边,那么 C C C即为所求回路。
若不是,从 G G G中删去 C C C中的所有边,得到一个图 H H H。注意到 ∣ E ( H ) ∣ < ∣ E ( G ) ∣ |E(H)| < |E(G)| ∣E(H)∣<∣E(G)∣ 且 H H H 可能不连通。由归纳假设, H H H 的每个连通分支都存在一条包含其所有边的回路。 因为 H H H 的每个连通分支都与 C C C至少有一个公共顶点,从 C C C的一个顶点 w w w出发沿 C C C的边遍历,当碰到与一个与 H H H的公共顶点 v v v时则先遍历 H H H的这个分支,完成 H H H的遍历后回到 v v v继续遍历 C C C直到再碰到另一个与 H H H的公共顶点 u u u,如此下去直到回到 w w w,则得到 G G G的一个回路。证毕。
10.证明:(1) 若G的每个顶点均为偶度点,则 G 没有割边 (2) 若 G 是 k 正则二部图且 k≥2,则 G 没有割边。
11.
有割边不一定有割点(
K
2
K_2
K2),有割点不一定有割边(比如两个有公共点的自环)
12.计算 K 3 , 3 K_{3, 3} K3,3的生成树的棵数。
16. Kruskal 算法能否用来求:
(1) 赋权连通图中的最大权的树?
(2) 赋权图中的最小权的最大森林?如果可以,怎样实现?
解:(1) 在Kruskal算法将求最小生成树替换为最大生成树即可。
(2) 用Kruskal算法对森林的每一个连通分支(即是树)求解即可。
- n n − 2 = 3 n^{n - 2} = 3 nn−2=3
答案: D




其中的 2 m ( G ) = ∑ v ∈ V ( G ) d ( v ) ≥ k − 1 + k + 2 ( n − k ) = 2 n − 1 > 2 n − 2 2m(G)=\sum_{v \in V(G)}d(v)\geq k-1+k+2(n-k)=2n-1>2n-2 2m(G)=∑v∈V(G)d(v)≥k−1+k+2(n−k)=2n−1>2n−2 其中的 k − 1 + k + 2 ( n − k ) k-1+k+2(n-k) k−1+k+2(n−k) 的由来如下:
- 至多 k − 1 k - 1 k−1 个一度顶点,则取 k − 1 k - 1 k−1 个一度顶点
- Δ ≥ k \Delta ≥ k Δ≥k 则取一个度为 k 的顶点。
- 剩下全部认为是度为 2 2 2 的顶点, 2 ( n − k ) 2(n - k) 2(n−k)
- 因此三项相加组成了最小的度 k − 1 + k + 2 ( n − k ) k-1+k+2(n-k) k−1+k+2(n−k)














例 5 一台计算机,它有一条加法指令,可以计算3个数的和。如果要求9个数的和,问至少执行多少次加法指令?(求内点 i i i 的数量,即为执行次数)



第三章
答案: D
答案: D K 2 K_2 K2 是块,同时也有割边
- 1
- k 连通,说明任何两点,至少有 k 条内点不重合的路相连
- √
- 错
边连通度为 3 是因为这是一个 3 正则图,去掉某个顶点的三条边。这个顶点就不连通咯
点连通度为 3 是因为,删除下面三个点


恰有两个非割点,所以由 n - 2 个割点
单图即简单图






第四章作业
1.判断图 4-43 所示的四个图是否可以一笔画
看图是否每个顶点为偶数或恰有两个奇点,即判断是否为 E图,或有欧拉迹
解:(a) 不可以; (b) 可以; ©可以; (d)可以。
- (a)4 个奇点
- (b)全是偶数点
- (c)恰好两个奇点
- (d)全是偶数点
2. 设 G 是具有 k 个奇度顶点的连通图,则在 G 中至少添加多少条边才能使 G 具有Euler 闭迹?
( k − 2 ) / 2 (k - 2) / 2 (k−2)/2
3.
4.设 n n n阶无向简单图 G G G有 m m m条边, n ⩾ 3 n\geqslant3 n⩾3且 m ⩾ ( n − 1 2 ) + 2 , m\geqslant\binom{n-1}{2}+2, m⩾(2n−1)+2,则 G G G是 Hamilton 图。
G 不是完全图,假设恰好只有两个点 u, v 不相邻,去掉 u v 的其余部分是完全图,边数为 ( n − 2 2 ) \binom{n-2}2 (2n−2),去掉两个点后,与之相关联得边为 d ( u ) + d ( v ) d(u) + d(v) d(u)+d(v),因此原图的边 m = ∣ E ( G ) ∣ = ∣ E ( G − { u , v } ) ∣ + d ( u ) + d ( v ) < ( n − 2 2 ) + n m=|E(G)|=|E(G-\{u,v\})|+d(u)+d(v)<\binom{n-2}{2}+n m=∣E(G)∣=∣E(G−{u,v})∣+d(u)+d(v)<(2n−2)+n
7. 证明: 若 G 没有奇点,则存在边不重的圈 C 1 , C 2 , … , C k C_1,C_2,\ldots,C_k C1,C2,…,Ck 使得 E ( G ) = E ( C 1 ) ∪ E ( C 2 ) ∪ ⋯ ∪ E ( C k ) E(G)=E(C_1)\cup\\E(C_2)\cup\cdots\cup E(C_k) E(G)=E(C1)∪E(C2)∪⋯∪E(Ck)。
8. 证明:若 G G G 有 2 k > 0 2k>0 2k>0 个奇数顶点,则存在 k k k 条边不重的迹 Q 1 , Q 2 , . . . , Q k {Q}_1,{Q}_2,...,{Q}_k Q1,Q2,...,Qk, 使得: E ( G ) = E ( Q 1 ) ⋃ E ( Q 2 ) ⋃ ⋯ ⋃ E ( Q k ) E(G)=E(Q_1)\bigcup E(Q_2)\bigcup\cdots\bigcup E(Q_k) E(G)=E(Q1)⋃E(Q2)⋃⋯⋃E(Qk)
证明: 不失一般性,只就 G G G 是连通图进行证明。
设 G = ( n , m ) G=(n,m) G=(n,m) 是连通图。令 v 1 , v 2 , . . . , v k , v k + 1 , . . . , v 2 k v_1,v_2,...,v_k,v_{k+1},...,v_{2k} v1,v2,...,vk,vk+1,...,v2k 是 G G G 的所有奇度点。
在 v i \mathbf{v}_{\mathrm{i}} vi与 v i + k \mathbf{v}_{\mathrm{i+k}} vi+k间连新边 e i e_\mathrm{i} ei 得图 G ∗ ( 1 ≦ i ≦ k ) G^*(1 \leqq i \leqq k) G∗(1≦i≦k). 则 G ∗ G^* G∗ 是欧拉图,因此,由Fleury算法得欧拉环游C.
在
C
C
C 中删去
e
i
e_\mathrm{i}
ei (1
≦
\leqq
≦ i
≦
\leqq
≦ k).得
k
k
k 条边不重的迹
Q
i
Q_\mathrm{i}
Qi (1
≦
\leqq
≦ i
≦
\leqq
≦ k)
E
(
G
)
=
E
(
Q
1
)
⋃
E
(
Q
2
)
⋃
⋯
⋃
E
(
Q
k
)
E(G)=E(Q_1)\bigcup E(Q_2)\bigcup\cdots\bigcup E(Q_k)
E(G)=E(Q1)⋃E(Q2)⋃⋯⋃E(Qk)
10.证明:若 (1) G 不是2连通图,或者 (2)G 是具有二分类(X,Y)的偶图,其中 |X|≠|Y| 则 G 是非 Hammilton 图。
11. 证明: 若 G 包含 Hamilton 路,则对于 V 的每个真子集 S,有 w(G-S)≤|S|+1。
12.
-
- 要保证连通
- 2.√
这里仅对只有两个奇数度顶点来说
- (A)
- (B),需要考虑图连通与否
答案:B
- 奇数,这样每个点度为 n - 1 偶数
- 将图右边的全部边加起来,注意我们添加的边也要加上
注意极小闭包有可能是完全图,也可能不是
- 错,闭包是完全图,则 G 是 H 图,反过来不行
答案:B
答案:D,如下奇圈,是 H 图,闭包是本身,H圈和其闭包的完全图这个没有充要关系
答案:A




如下原图的奇点为 v 2 , v 3 , v 7 , v 6 , v 5 , v 4 v_2, v_3, v_7, v_6, v_5, v_4 v2,v3,v7,v6,v5,v4




用此定理判断非哈密尔顿图









注: 推论的条件是充分而非必要的。

通过添加一个点来说明,很美妙的思维!

两个子集不相等的偶图,一定不存在 H H H 圈



