图论作业(一)

第一章作业

1、证明在 n 阶连通图中

(1)至少有 n-1 条边。
(2)如果边数大于 n-1,则至少有一条闭迹。
(3)如恰有 n-1 条边,则至少有一个奇度点。

(1)证明:
若对 ∀ v ∈ V ( G ) \forall v \in V(G) vV(G), 有 d ( v ) ≥ 2 d(v)≥2 d(v)2, 则: 2 m = ∑ d ( v ) ≥ 2 n ⇒ m ≥ n > n − 1 2m= \sum d(v) ≥ 2n \Rightarrow m ≥ n > n-1 2m=d(v)2nmn>n1;
若G中有1度顶点,对顶点数n作数学归纳。
当 n=2 时,G显然至少有一条边,结论成立。设当n = k时,结论成立,即至少有 k - 1条边
当 n=k+1 时,设去掉任一一个一度顶点 v v v 后,总度数为: d ( V ) − 1 d(V)-1 d(V)1,则剩下的图 G − v G-v Gv 满足 n = k 的情况,是 k k k 阶连通图,因此至少有 k − 1 k-1 k1 条边,将次一度顶点还原后,所以至少有 k − 1 + 1 = k k - 1 + 1 = k k1+1=k 条边。

(2) 由于连通,考虑 v 1 → v 2 → … → v n \mathrm{v_{1} \to v_{2}\to\ldots\to v_{n}} v1v2vn 的路,则长为 n − 1 n-1 n1, 但图 G G G 的边数大于 n − 1 n-1 n1, 因此存在 v i , v j \mathrm{v_{i}}, \mathrm{v_{j}} vi,vj, 使得 v i \mathrm{v_{i}} vi adj v j \mathrm{v_{j}} vj, 这样, v i → v i + 1 → … → v j \mathrm{v_{i}\to v_{i + 1}\to\ldots\to v_{j}} vivi+1vj 并上 v i v j \mathrm{v_{i}v_{j}} vivj 构成一条闭迹,即图 G G G中有闭迹。

(3)若不然,没有奇度点,也即对 ∀ v ∈ V ( G ) \forall v \in V(G) vV(G), 有 d ( v ) ≥ 2 d(v) ≥ 2 d(v)2, 则: 2 m = ∑ d ( v ) ≥ 2 n ⇒ m ≥ n > n − 1 2m= \sum d(v) ≥ 2n \Rightarrow m ≥ n > n-1 2m=d(v)2nmn>n1,与已知矛盾。

2、设G是n阶完全图,试问

(1)有多少圈?
(2)包含 G G G中某边 e e e的圈有多少?
(3)任意两点间有多少条路?

解:
(1)对 n n n 阶完全图中的任意 k ( 3 ≤ k ≤ n ) k (3≤k ≤n) k(3kn) 个不同顶点,都可以构成一个长度为 k k k 的圈。所以 n n n 阶完全图中不同的圈的个数为:

( 3 n ) + ( 4 n ) + ⋯ + ( n n ) = 2 n − n 2 + n 2 − 1 \begin{pmatrix}3\\n\end{pmatrix}+\begin{pmatrix}4\\n\end{pmatrix}+\cdots+\begin{pmatrix}n\\n\end{pmatrix}=2^n-\frac{n^2+n}{2}-1 (3n)+(4n)++(nn)=2n2n2+n1

(2)要求圈包含某边 e e e,则不同圈的个数为:(要求包含圈 e,因此将 e 两端的顶点选中,在剩余的 n − 2 n - 2 n2 个顶点中至少选择一个即可)
( 1 n − 2 ) + ( 2 n − 2 ) + ⋯ + ( n − 2 n − 2 ) = 2 n − 2 − 1 \begin{pmatrix}1\\n-2\end{pmatrix}+\begin{pmatrix}2\\n-2\end{pmatrix}+\cdots+\begin{pmatrix}n-2\\n-2\end{pmatrix}=2^{n-2}-1 (1n2)+(2n2)++(n2n2)=2n21

(3)任意两点间的不同路的条数为:(路表示途径的顶点互不相同,依次两次之间不经过任何其他点,即剩余 n - 2 个点选 0 个,为 1 中方式,剩余 n - 2 个点选 1 个,选 2 个 … )
1 + ( 1 n − 2 ) + ( 2 n − 2 ) + ⋯ + ( n − 2 n − 2 ) = 2 n − 2 1+\begin{pmatrix}1\\n-2\end{pmatrix}+\begin{pmatrix}2\\n-2\end{pmatrix}+\cdots+\begin{pmatrix}n-2\\n-2\end{pmatrix}=2^{n-2} 1+(1n2)+(2n2)++(n2n2)=2n2

3、证明图1-27中的两图不同构:

4、证明图1-28中的两图是同构的

证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射 f : f ( v i ) → u i ( 1 ≤ i ≤ 10 ) \mathrm{f:f(v_{i})\to u_{i}}\quad(1\leq i\leq10) f:f(vi)ui(1i10)
容易证明,对 ∀ v i v j ⁡ ∈ E ⁡ ( ( a ) ) , 有 f ⁡ ( v i v j ⁡ ) = u i u j ⁡ ∈ E ⁡ ( ( b ) ) ( 1 ≤ i ⁡ ≤ 10 , 1 ≤ j ≤ 10 ) \forall\operatorname{v_{i}v_{j}}\in\operatorname{E}((\mathbf{a})),{\text{有}}\operatorname{f}(\operatorname{v_{i}v_{j}}){=}\operatorname{u_{i}u_{j}}\in\operatorname{E}((\mathbf{b}))(1{\le}\operatorname{i}\leq10,1{\le}j{\le}10) vivjE((a)),f(vivj)=uiujE((b))(1i10,1j10)
由图的同构定义知,图 1-27 的两个图是同构的。(比如(a)中 v 6 \mathrm{v_6} v6 v 9 \mathrm{v_9} v9 相连,且 v 6 \mathrm{v_6} v6 v 1 \mathrm{v_1} v1 v 8 \mathrm{v_8} v8 相邻, v 9 \mathrm{v_9} v9 v 7 \mathrm{v_7} v7 v 4 \mathrm{v_4} v4 相邻, 对应与(b)中 u 6 \mathrm{u_6} u6 u 9 \mathrm{u_9} u9 相连,且 u 6 \mathrm{u_6} u6 u 1 \mathrm{u_1} u1 u 8 \mathrm{u_8} u8 相邻, u 9 \mathrm{u_9} u9 u 7 \mathrm{u_7} u7 u 4 \mathrm{u_4} u4 相邻)

5、证明:四个顶点的非同构简单图有11个。

在这里插入图片描述

注意下面的情况两两是同构的

6、设 G 是具有 m 条边的 n 阶简单图。证明: m = ( n 2 ) m=\begin{pmatrix}n\\2\end{pmatrix} m=(n2)当且仅当G是完全图。

证明 必要性 若 G 为非完全图, 则 ∃ v ∈ V ( G ) , \exists\mathrm{v}\in\mathrm{V}(\mathrm{G}), vV(G), d ( v ) < n − 1 ⇒ Σ d ( v ) < n ( n − 1 ) ⇒ 2 m < n ( n − 1 ) ⇒ m < n ( n − 1 ) / 2 = ( n 2 ) , \mathrm{d(v)<n-1\Rightarrow\Sigma d(v)<n(n-1)\Rightarrow2m<n(n-1)} \Rightarrow\mathrm{m<n(n-1)/2=}{\binom{n}{2}}, d(v)<n1Σd(v)<n(n1)2m<n(n1)m<n(n1)/2=(2n), 与已知相矛盾。( d ( v ) < n − 1 \mathrm{d(v)<n-1} d(v)<n1 是因为完全图每个点有, d ( v ) = n − 1 \mathrm{d(v) = n-1} d(v)=n1,而非完全图,所以 d ( v ) < n − 1 \mathrm{d(v)<n-1} d(v)<n1

充分性 G G G为完全图,则 2 m = ∑ d ( v ) = n ( n − 1 ) ⇒ m = ( n 2 ) . 2\mathrm{m=\sum d(v)=n(n-1)\Rightarrow m=}\begin{pmatrix}n\\2\end{pmatrix}. 2m=d(v)=n(n1)m=(n2).

7、证明

(1) m ( K l , n ) = l n m(K_{l,n})=ln m(Kl,n)=ln

证明: (1) K l , n K_{l,n} Kl,n 的总度数为 2 l n 2ln 2ln K l , n K_{l,n} Kl,n 表示完全偶图,其中一部分 l l l 个顶点,另一部分 n n n 个顶点,总边数即为 l n ln ln), 所以, m ( K l , n ) = l n m(K_{l,n})=ln m(Kl,n)=ln

(2)若 G G G是具有 m m m条边的 n n n阶简单偶图,则 m ≤ ⌊ n 2 4 ⌋ m\leq\left\lfloor\frac{n^2}4\right\rfloor m4n2

直接说明正则偶图的最大边数为 n 1 n 2 n_1n_2 n1n2 n 1 + n 2 = n n_1 + n_2 = n n1+n2=n,配个完全平方即可证明

8、设 △ \bigtriangleup δ \delta δ 是简单图G的最大度和最小度,则 δ ⩽ 2 m / n ⩽ △ \delta\leqslant2m/n\leqslant\bigtriangleup δ2m/n

2 m = ∑ v ∈ V d ( v ) ≥ n δ ⇒ δ ≤ 2 m n 2m=\sum_{v \in V}d(v)\geq n\delta\Rightarrow\delta\leq\frac{2m}{n} 2m=vVd(v)nδδn2m

2 m = ∑ v ∈ V d ( v ) = Δ n ⇒ Δ ≥ 2 m n 2m=\sum_{v \in V}d(v)=\Delta n\Rightarrow\Delta\geq\frac{2m}{n} 2m=vVd(v)=ΔnΔn2m

∴ δ ≤ 2 m n ≤ Δ \therefore\delta\leq{\frac{2m}{n}}\leq\Delta δn2mΔ

9、证明:若 k k k 正则偶图具有二分类 V = V 1 ∪ V 2 , V=V_{1}\cup V_{2}, V=V1V2,,则 ∣ V 1 ∣ = ∣ V 2 ∣ |V_{1}| = |V_{2}| V1=V2

证明 由于 G G G k k k正则偶图(所有顶点的度为 k,只有所有顶点被平分到两个集合,才能满足 每个顶点度为 k k k 即正则偶图),所以, k ∣ V 1 ∣ = m = k ∣ V 2 ∣ ⇒ ∣ V 1 ∣ = ∣ V 2 ∣ . k|V_1| = m = k|V_2| \Rightarrow |V_1| = |V_2|. kV1=m=kV2V1=V2∣.

10、证明:由两人或更多个人组成的人群中,总有两人在该人群中恰好有相同的朋友数。

证明 将人用图的顶点表示,图的两顶点邻接当且仅当人群中的两人相认识,于是,问题转化为:证明在任意一个简单图中必有一对度数相等的顶点。

若图 G G G 为连通单图,则对 ∀ v ∈ V ( G ) \forall v∈V(G) vV(G), 有 1 < d ( v ) ≤ n − 1 1<d(v)≤n-1 1<d(v)n1, 因此, n n n 个顶点中必存在两个顶点,其度数相同 (鸽笼原理); 若 G G G 为非连通图。设 G 1 G_1 G1 为阶数 n n n 的连通分支,则 ∀ v ∈ V ( G 1 ) \forall v∈V(G_1) vV(G1) 1 < d ( v ) ≤ n 1 − 1 1<d(v)≤n_1-1 1<d(v)n11,于是在 G 1 G_1 G1 中必存在两个顶点,其度数相同。

11、证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。

证明 由于 7 7 7 个顶点的简单图的最大度不会超过6,因此序列 (7,6,5,4,3,3,2) 不是图序列;
(6,6,5,4,3,3,1) 是图序列 ⇔ \Leftrightarrow 然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。

12、证明:若 δ ≥ 2 δ≥2 δ2,则 G G G包含圈。

证明1 不失一般性,只就连通图证明即可。设 V ( G ) = { v 1 , v 2 , … , v n } V(G)=\{v_1,v_2,…,v_n\} V(G)={v1,v2,,vn}, 对于 G G G中的一条最长路 P = v 1 v 2 … v k P = v_1v_2…v_k P=v1v2vk(首先路是不含重复顶点的,考虑一下不是路,若含重复顶点,则取重复顶点及其之间的点,即构成一个圈), 因为 δ ≥ 2 δ≥2 δ2,那么除了与 v 1 v_1 v1 相邻的 v 2 v_2 v2 之外,至少还有一个邻接顶点 v ′ v{'} v ,若 v ′ v{'} v 不在最长路上,则可构造出比 P P P 更长的路 v ′ v 1 ∪ v 1 v 2 . . . v k v{'}v_1 \cup v_1 v_2...v_k vv1v1v2...vk ,与 P P P 是最长路矛盾,因此 v ′ v{'} v 一定在最长路 P P P 中,因此 v 1 v 2 . . . v ′ v 1 v_1 v_2...v{'}v_1 v1v2...vv1 是圈 G G G 的一个圈。(最长路是指不重复顶点的路,顶点可以重复就是无限条了)

证明2: 不失-般性,只就连通图证明即可。因为 δ ≥ 2 δ≥2 δ2,由图 G G G v 1 v_1 v1 v k v_k vk的路可以向前延伸,又由于 G G G只是有限个顶点,因此延伸到某一后再往下延伸,必然要与走过的顶点相重合,
这样就形成了圈。

证明3: 反证法:不失-般性,设 G G G n n n阶连通图,若 G G G没有圈,那么 G G G是树,于是 m ( G ) = n − 1 m(G)=n- 1 m(G)=n1 , 但是由握手定理: 2 m = ∑ v ∈ V ( G ) d ( v ) ≥ n δ = 2 n 2m=\sum_{v\in V(G)}d(v)\geq n\delta=2n 2m=vV(G)d(v)nδ=2n,得到 m ( G ) ≥ n > n − 1 m(G)\geq n>n-1 m(G)n>n1, 从而矛盾.

13、证明:若 G G G是简单图且 δ ≥ 2 δ≥2 δ2,则 G G G包含长至少是 δ + 1 δ+1 δ+1的圈。

证明 v 0 v 1 … v k v_0v_1…v_k v0v1vk G G G 中一条最长路,则 v 0 v_0 v0 的邻接顶点除 v 1 v_1 v1 外,还有 δ − 1 δ-1 δ1 个,且必须也在最长路上(见习题 12),否则,会构建出新的更长路。设与 v 0 v_0 v0 邻接,且脚标最大的点为 v t v_t vt ,显然,我们有 t ≥ δ t ≥ δ tδ,于是 v 0 v 1 . . . v t ∪ v t v 0 v_0 v_1 ... v_t \cup v_tv_0 v0v1...vtvtv0 是一个圈长至少为 δ + 1 δ+1 δ+1 的圈

17、证明:若 G G G 不连通,则 G ˉ \bar{G} Gˉ 连通。

证明 ∀ u , v ∈ V ( G ˉ ) , \forall u,v \in V(\bar{G}), u,vV(Gˉ), u u u v v v 属于 G G G 的不同连通分支,显然 u u u v v v G ˉ \bar{G} Gˉ 中连通; 若 u u u v v v 属于 G G G 的同一连通分支,设 w w w G G G 的另一个连通分支中的一个顶点,则 u u u w , v w,v w,v w w w 分别在 G ˉ \bar{G} Gˉ 中连通,因此, u u u v v v G ˉ \bar{G} Gˉ 中连通。

18、证明:若 e ∈ E ( G ) e{\in}E(G) eE(G),则 w ( G ) ⩽ ω ( G − e ) ⩽ ω ( G ) + 1. w(G) {\leqslant}\omega(G{-}e){\leqslant}\omega(G){+}1. w(G)ω(Ge)ω(G)+1.

证明 e e e G G G 的割边,则 w ( G − e ) = w ( G ) + 1 w(G-e)=w(G)+1 w(Ge)=w(G)+1, 若 e e e G G G 的非割边,则 w ( G − e ) = w ( G ) w(G-e)=w(G) w(Ge)=w(G), 所以,若 e ∈ E ( G ) e\in E(G) eE(G), 则 ω( G ) ⩽ ω ( G − e ) ⩽ ω ( G ) + 1 G)\leqslant\omega(G-e)\leqslant\omega(G)+1 G)ω(Ge)ω(G)+1

19、证明:若 G G G 连通且 G G G 的每个顶点的度均为偶数,则对于任意的 v ∈ V ( G ) , w ( G − v ) ≤ d ( v ) / 2 v∈V(G), w(G-v)≤d(v)/2 vV(G),w(Gv)d(v)/2 成立。

证明: C C C w ( G − v ) w(G-v) w(Gv) 的一连通分支,则在 G G G 中, v v v 有偶数条边伸向 C C C,若不然, C C C 中奇度点个数为奇数。因此, v v v 至少有两条边伸向 C C C,有 w ( G − v ) ≤ d ( v ) / 2 w(G-v)≤d(v)/2 w(Gv)d(v)/2 成立。

22.证明:若 G G G 是至少有三个点的简单连通图但不是完全图,则 G G G有三个顶点 u , v u, v u,v w w w,使得 u v , v w ∈ E uv , vw \in E uv,vwE,而 u w ∉ E uw ∉ E uw/E

在这里插入图片描述


在这里插入图片描述

  1. 4 个
  2. 2 m 2^m 2m
  3. n ( n − 1 ) 4 \frac{n(n-1)}{4} 4n(n1)
  4. n k 2 \frac{nk}{2} 2nk
  5. 11
  6. 自补图个数 2 个如下
    在这里插入图片描述

在这里插入图片描述

  1. 只需判断序列和是不是偶数

  2. 如果是判断是否为图序列,或者一个简单图度序列,则需要进一步判断其最大度应该为序列长度 - 1(即不能超过完全图的边长)。如果满足进一步通过那个充要条件看是否可图

答案: C


在这里插入图片描述

  • B:奇数
  • C:最大度超过
  • D:会发现要是存在重边,要么存在自环

答案: A


在这里插入图片描述

  1. n ( n − 1 ) 2 − n k 2 \frac{n(n - 1)}{2} - \frac{nk}{2} 2n(n1)2nk 用完全图去减
  2. n − 1 − δ n - 1 - \delta n1δ
  3. n − 1 − Δ n - 1 - \Delta n1Δ
  4. 握手定理: 2 m = 3 n , 2 n = m + 3 , n = 6 , m = 9 2m = 3n,2n = m + 3, n = 6, m = 9 2m=3n2n=m+3,n=6,m=9
  5. 握手定理,顶点和列方程

在这里插入图片描述


在这里插入图片描述

  • A, K 5 K_5 K5 的两个自补图都连通
  • C,离散数学中的概念
  • D,简单图,至少连个顶点的度数相同

答案:AD


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

  • C

在这里插入图片描述

  • A k A^k Ak a i j ( k ) a_{ij}^{(k)} aij(k) 这个元素
  • n − 1 n - 1 n1
  • 对角线之和/2 = 6

在这里插入图片描述

在这里插入图片描述

  • n 2 4 \frac{n^2}{4} 4n2 向下取整

在这里插入图片描述















答: 根据 定理2 一个图是偶图当且当它不包含奇圈。可知,
1.不是(含有奇圈) 2.是 3.是(没有圈) 4.不是




所以, v 1 v_1 v1 v 3 v_3 v3的途径长度为2和3的条数分别为:3和4。



先把第二列到最后一列的元素加到第一列,然后提取出 λ − n + 1 λ-n+1 λn+1,再通过分别将第一列所有1加到其他各列,这样,除了第一列的元素全为 1,剩下主对角线只剩下 n − 1 n-1 n1 λ + 1 λ+1 λ+1,利用第一行进行代数余子式来求解最终的行列式,通过代数余子式转换后,实际上最终对角线元素相乘即可

E E E 是主对角线为 1 的单位矩阵




第二章

1. 证明:非平凡树的最长路的起点和终点均是1度的。

证明: T T T为非平凡树且 P P P T T T的最长路。若 P P P的一个端点 u u u不是一度点,即 d ( u ) ≥ 2 d(u)≥2 d(u)2,则除了 P P P 上的邻点外, u u u 还有一个邻点 v v v。若 v ∉ V ( P ) v ∉V(P) v/V(P),则 P P P加上点 v v v后,得到一条更长的路,这与 P P P是最长路矛盾; 若 v ∈ V ( P ) v∈V(P) vV(P), 则得到一个圈,这与 T T T是树矛盾!证毕。

2. 证明:每棵恰有两个1度顶点的树均是路。

至少存在一个度不小于 3 的点,即内部点

在这里插入图片描述

3. 若 G G G 是树且 △ ≥ k △≥k k,则 G G G 至少有 k k k 1 1 1 度顶点。

证明: 若不然,设 G G G 至多有 k − 1 k- 1 k1个 1 度顶 点 。由于 Δ ≥ k \Delta \geq k Δk ,于是,由握手定理得: 2 m ( G ) = ∑ v ∈ V ( G ) d ( v ) ≥ k − 1 + k + 2 ( n − k ) = 2 n − 1 > 2 n − 2 2m(G)=\sum_{v\in V(G)}d(v)\geq k-1+k+2(n-k)=2n-1>2n-2 2m(G)=vV(G)d(v)k1+k+2(nk)=2n1>2n2。即 m > n − 1 m>n-1 m>n1,这与树的定义矛盾。证毕。

4. 证明:若 G G G 是森林且恰有 2 k k k 个奇度点,则在 G G G 中有 k k k 条边不重的路 P 1 , P 2 , ⋯   , P k P_1,P_2,\cdots,P_k P1,P2,,Pk 使得 E ( G ) = E ( P 1 ) ∪ E ( P 2 ) ∪ ⋯ ∪ E ( P k ) E(G)=E(P_1)\cup E(P_2)\cup\cdots\cup E(P_k) E(G)=E(P1)E(P2)E(Pk)

5. 证明:正整数序列 d 1 , d 2 , ⋯   , d k d_1,d_2,\cdots,d_k d1,d2,,dk 是一棵树的度序列当且仅当 ∑ i = 1 n d i = 2 ( n − 1 ) \sum_{i=1}^nd_i=2(n-1) i=1ndi=2(n1)

实际上就是去掉一个叶节点来考虑这个问题。
在这里插入图片描述

7. 设 G G G 连通且 e ∈ E ( G ) e \in E(G) eE(G)。证明:(1) e e e G G G 的每棵生成树中当且仅当 e e e G G G 的割边。(2) e e e 不在 G G G 的任一生成树中当且仅当 e e e G G G 的自环。

在这里插入图片描述

9. 证明:顶点度数为偶数的连通图本身可构成一个包含所有边的回路(回路即闭迹:指边不重复)。

证明: G G G为满足条件的图。对 G G G的边数作归纳。

G G G连通且每个点的度都为偶数,因此 G G G包含一个圈 C C C (第一章习题12)。若 C C C包含 G G G的所有边,那么 C C C即为所求回路。

若不是,从 G G G中删去 C C C中的所有边,得到一个图 H H H。注意到 ∣ E ( H ) ∣ < ∣ E ( G ) ∣ |E(H)| < |E(G)| E(H)<E(G) H H H 可能不连通。由归纳假设, H H H 的每个连通分支都存在一条包含其所有边的回路。 因为 H H H 的每个连通分支都与 C C C至少有一个公共顶点,从 C C C的一个顶点 w w w出发沿 C C C的边遍历,当碰到与一个与 H H H的公共顶点 v v v时则先遍历 H H H的这个分支,完成 H H H的遍历后回到 v v v继续遍历 C C C直到再碰到另一个与 H H H的公共顶点 u u u,如此下去直到回到 w w w,则得到 G G G的一个回路。证毕。

10.证明:(1) 若G的每个顶点均为偶度点,则 G 没有割边 (2) 若 G 是 k 正则二部图且 k≥2,则 G 没有割边。

在这里插入图片描述在这里插入图片描述

11.

有割边不一定有割点( K 2 K_2 K2),有割点不一定有割边(比如两个有公共点的自环)
在这里插入图片描述

12.计算 K 3 , 3 K_{3, 3} K3,3的生成树的棵数。

在这里插入图片描述

16. Kruskal 算法能否用来求:

(1) 赋权连通图中的最大权的树?
(2) 赋权图中的最小权的最大森林?如果可以,怎样实现?

解:(1) 在Kruskal算法将求最小生成树替换为最大生成树即可。
(2) 用Kruskal算法对森林的每一个连通分支(即是树)求解即可。


在这里插入图片描述

  • n n − 2 = 3 n^{n - 2} = 3 nn2=3

在这里插入图片描述


在这里插入图片描述

答案: D


在这里插入图片描述





其中的 2 m ( G ) = ∑ v ∈ V ( G ) d ( v ) ≥ k − 1 + k + 2 ( n − k ) = 2 n − 1 > 2 n − 2 2m(G)=\sum_{v \in V(G)}d(v)\geq k-1+k+2(n-k)=2n-1>2n-2 2m(G)=vV(G)d(v)k1+k+2(nk)=2n1>2n2 其中的 k − 1 + k + 2 ( n − k ) k-1+k+2(n-k) k1+k+2(nk) 的由来如下:

  • 至多 k − 1 k - 1 k1 个一度顶点,则取 k − 1 k - 1 k1 个一度顶点
  • Δ ≥ k \Delta ≥ k Δk 则取一个度为 k 的顶点。
  • 剩下全部认为是度为 2 2 2 的顶点, 2 ( n − k ) 2(n - k) 2(nk)
  • 因此三项相加组成了最小的度 k − 1 + k + 2 ( n − k ) k-1+k+2(n-k) k1+k+2(nk)











例 5 一台计算机,它有一条加法指令,可以计算3个数的和。如果要求9个数的和,问至少执行多少次加法指令?(求内点 i i i 的数量,即为执行次数)




第三章

在这里插入图片描述

答案: D


在这里插入图片描述

答案: D K 2 K_2 K2 是块,同时也有割边


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

  • 1
  • k 连通,说明任何两点,至少有 k 条内点不重合的路相连

边连通度为 3 是因为这是一个 3 正则图,去掉某个顶点的三条边。这个顶点就不连通咯
在这里插入图片描述

点连通度为 3 是因为,删除下面三个点
在这里插入图片描述




恰有两个非割点,所以由 n - 2 个割点

单图即简单图







第四章作业

1.判断图 4-43 所示的四个图是否可以一笔画

看图是否每个顶点为偶数或恰有两个奇点,即判断是否为 E图,或有欧拉迹
在这里插入图片描述
解:(a) 不可以; (b) 可以; ©可以; (d)可以。

  • (a)4 个奇点
  • (b)全是偶数点
  • (c)恰好两个奇点
  • (d)全是偶数点

2. 设 G 是具有 k 个奇度顶点的连通图,则在 G 中至少添加多少条边才能使 G 具有Euler 闭迹?

( k − 2 ) / 2 (k - 2) / 2 (k2)/2

3.

在这里插入图片描述

4.设 n n n阶无向简单图 G G G m m m条边, n ⩾ 3 n\geqslant3 n3 m ⩾ ( n − 1 2 ) + 2 , m\geqslant\binom{n-1}{2}+2, m(2n1)+2, G G G是 Hamilton 图。

G 不是完全图,假设恰好只有两个点 u, v 不相邻,去掉 u v 的其余部分是完全图,边数为 ( n − 2 2 ) \binom{n-2}2 (2n2),去掉两个点后,与之相关联得边为 d ( u ) + d ( v ) d(u) + d(v) d(u)+d(v),因此原图的边 m = ∣ E ( G ) ∣ = ∣ E ( G − { u , v } ) ∣ + d ( u ) + d ( v ) < ( n − 2 2 ) + n m=|E(G)|=|E(G-\{u,v\})|+d(u)+d(v)<\binom{n-2}{2}+n m=E(G)=E(G{u,v})+d(u)+d(v)<(2n2)+n

在这里插入图片描述

7. 证明: 若 G 没有奇点,则存在边不重的圈 C 1 , C 2 , … , C k C_1,C_2,\ldots,C_k C1,C2,,Ck 使得 E ( G ) = E ( C 1 ) ∪ E ( C 2 ) ∪ ⋯ ∪ E ( C k ) E(G)=E(C_1)\cup\\E(C_2)\cup\cdots\cup E(C_k) E(G)=E(C1)E(C2)E(Ck)

在这里插入图片描述

8. 证明:若 G G G 2 k > 0 2k>0 2k>0 个奇数顶点,则存在 k k k 条边不重的迹 Q 1 , Q 2 , . . . , Q k {Q}_1,{Q}_2,...,{Q}_k Q1,Q2,...,Qk, 使得: E ( G ) = E ( Q 1 ) ⋃ E ( Q 2 ) ⋃ ⋯ ⋃ E ( Q k ) E(G)=E(Q_1)\bigcup E(Q_2)\bigcup\cdots\bigcup E(Q_k) E(G)=E(Q1)E(Q2)E(Qk)

证明: 不失一般性,只就 G G G 是连通图进行证明。

G = ( n , m ) G=(n,m) G=(n,m) 是连通图。令 v 1 , v 2 , . . . , v k , v k + 1 , . . . , v 2 k v_1,v_2,...,v_k,v_{k+1},...,v_{2k} v1,v2,...,vk,vk+1,...,v2k G G G 的所有奇度点。

v i \mathbf{v}_{\mathrm{i}} vi v i + k \mathbf{v}_{\mathrm{i+k}} vi+k间连新边 e i e_\mathrm{i} ei 得图 G ∗ ( 1 ≦ i ≦ k ) G^*(1 \leqq i \leqq k) G(1ik). 则 G ∗ G^* G 是欧拉图,因此,由Fleury算法得欧拉环游C.

C C C 中删去 e i e_\mathrm{i} ei (1 ≦ \leqq i ≦ \leqq k).得 k k k 条边不重的迹 Q i Q_\mathrm{i} Qi (1 ≦ \leqq i ≦ \leqq k)
E ( G ) = E ( Q 1 ) ⋃ E ( Q 2 ) ⋃ ⋯ ⋃ E ( Q k ) E(G)=E(Q_1)\bigcup E(Q_2)\bigcup\cdots\bigcup E(Q_k) E(G)=E(Q1)E(Q2)E(Qk)

10.证明:若 (1) G 不是2连通图,或者 (2)G 是具有二分类(X,Y)的偶图,其中 |X|≠|Y| 则 G 是非 Hammilton 图。

在这里插入图片描述
在这里插入图片描述

11. 证明: 若 G 包含 Hamilton 路,则对于 V 的每个真子集 S,有 w(G-S)≤|S|+1。

在这里插入图片描述

12.

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

    1. 要保证连通
  • 2.√

在这里插入图片描述


这里仅对只有两个奇数度顶点来说
在这里插入图片描述


在这里插入图片描述

  • (A)
  • (B),需要考虑图连通与否

答案:B


在这里插入图片描述
在这里插入图片描述

  • 奇数,这样每个点度为 n - 1 偶数
  • 将图右边的全部边加起来,注意我们添加的边也要加上

在这里插入图片描述


注意极小闭包有可能是完全图,也可能不是
在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

  1. 错,闭包是完全图,则 G 是 H 图,反过来不行

在这里插入图片描述
答案:B


在这里插入图片描述

答案:D,如下奇圈,是 H 图,闭包是本身,H圈和其闭包的完全图这个没有充要关系
在这里插入图片描述


在这里插入图片描述
答案:A


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述







如下原图的奇点为 v 2 , v 3 , v 7 , v 6 , v 5 , v 4 v_2, v_3, v_7, v_6, v_5, v_4 v2,v3,v7,v6,v5,v4





用此定理判断非哈密尔顿图










注: 推论的条件是充分而非必要的。


通过添加一个点来说明,很美妙的思维!


两个子集不相等的偶图,一定不存在 H H H




References

图论答案

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值