图论作业(二)

第五章

1. 证明:每个k方体都有完美匹配;(2)求 K 2 n K_{2n} K2n K n , n K_{n, n} Kn,n 中不同的完美匹配的个数。

在这里插入图片描述

2. 证明:一棵树最多只有一个完美匹配。

在这里插入图片描述

3. 对每个 k > 1 k>1 k>1,找出一个没有完美匹配的 k k k 正则简单图的例子,(不太懂)

在这里插入图片描述

4. 证明: K 4 K_4 K4 有唯一的一个 1-因子分解。

在这里插入图片描述

K 8 K_8 K8 的所有一因子分解如下:

5. 求 K 3 , 3 K_{3,3} K3,3 K 6 K_6 K6 的 1-因子的个数。

K 3 , 3 = 3 ! = 6 K_{3,3} = 3! = 6 K3,3=3!=6

K 6 = 5 × 3 × 1 = 15 K_6 = 5 × 3 × 1 = 15 K6=5×3×1=15
在这里插入图片描述

6. 证明: K 2 n K_{2n} K2n 的不同的 1-因子的数目为 ( 2 n ) ! 2 n n ! \frac{(2n)!}{2^nn!} 2nn!(2n)!

在这里插入图片描述

7. 将 K 9 K_9 K9 表示为四个生成圈之和

在这里插入图片描述

8. 证明: K 6 n − 2 K_{6n-2} K6n2 有一个 3-因子分解。

在这里插入图片描述

10. 证明:若 n n n 是偶数且 δ ( G ) ⩾ n / 2 + 1 \delta(G)\geqslant n/2+1 δ(G)n/2+1, 则 n n n 阶简单图 G G G 有 3-因子。

在这里插入图片描述

11. 对 k > 0 k>0 k>0,证明 (1) 每个 k k k 正则偶图是 1-可因子分解的; (2) 每个 2 k 2k 2k 正则图是 2-可因子分解的。

在这里插入图片描述

12. 证明:一棵树 T 有完美匹配当且仅当 o ( T − v ) = 1 o(T-v)=1 o(Tv)=1 对所有的 v ∈ V ( T ) v \in V(T) vV(T) 成立。

13

在这里插入图片描述在这里插入图片描述

15.

在这里插入图片描述

18.

在这里插入图片描述


在这里插入图片描述

下面这个图有割边有完美匹配
在这里插入图片描述


在这里插入图片描述

  • C

答案:C


在这里插入图片描述

  • A

在这里插入图片描述
α \alpha α


在这里插入图片描述


在这里插入图片描述











偶数阶完全图可一因子分解,即 K 2 n K_{2n} K2n可分解成 2 n − 1 2n-1 2n1 个一因子,所以 K 2 ( 3 n − 1 ) K_{2(3n-1)} K2(3n1),可分解成 2 ∗ ( 3 n − 1 ) − 1 = 6 n − 3 2*(3n-1)-1=6n-3 2(3n1)1=6n3 个一因子即 2 n − 1 2n-1 2n1 3 3 3 因子的和

注意: 不同的一因子之间是可以并起来的。


第六章

1. 判断图6-37所示的七个图是否可平面?为什么?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.

在这里插入图片描述

3.

在这里插入图片描述

4.

在这里插入图片描述
在这里插入图片描述

5.

在这里插入图片描述

6.

在这里插入图片描述

7.

在这里插入图片描述

8.

在这里插入图片描述在这里插入图片描述

11

在这里插入图片描述在这里插入图片描述

19.

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

  • 3
  • n − m + ϕ = 2 n - m + \phi = 2 nm+ϕ=2
  • 6
  • 5 连通,意味着最小度为 5,意味着
    在这里插入图片描述

在这里插入图片描述


第七章作业

在这里插入图片描述

对于完全图 K n K_n Kn ,点着色为 Δ + 1 \Delta + 1 Δ+1,等于 n n n

五色定理


在这里插入图片描述

  • 彼得森图的点色数是 3,边色数是 4
  • n n n 阶树的点色数是 2(每条边的两个端点颜色不同即可),边色数是 Δ \Delta Δ(树不含有奇圈,因此为 Δ \Delta Δ
  • n n n 方体的点色数为 2,边色数为 n − 1 n - 1 n1

在这里插入图片描述


或者是考试不冲突类问题,都属于下面这种
在这里插入图片描述
在这里插入图片描述

奇圈的点色数为 3

图中有一个几圈,点色数至少为 3,由于 LA 与奇圈每个点相连,点色数不再是 3,变为至少 4,LA 颜色不同。

然后用 4 种颜色去尝试


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

第八章作业

强连通分支:即提取出的一个最大能够满足双向连通的子图,如果本身是强连通的,则本身就是自己的一个强连通分支。
在这里插入图片描述

强连通没有割边,是因为有割边一定是单向连通的


在这里插入图片描述

2 m 2^m 2m


在这里插入图片描述


在这里插入图片描述

按照如下排列达到最小:除了最后一层 2个,其余每层 1 个,因此至少 h + 1 个树叶
在这里插入图片描述

常见的一些证明题

在这里插入图片描述

其中不等式说明含有 H 圈,n 为偶数且含有H,说明这个H可以为两个 1 因子的和,然后图 G 减去一个一因子,不断这个过程,就会有三个 1 因子 + 一个 2 因子。(注意奇数阶就不能这样做了)

在这里插入图片描述


在这里插入图片描述

和上面相同的方法


在这里插入图片描述

不断划分每个联通分支都是圈


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

反证法,
在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

填空题与证明题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值