【图论及其运用 — 电子科技大学】复习课件

(一)、重点概念

1、图、简单图、图的同构与自同构、度序列与图序列、补图与自补图、两个图的联图、两个图的积图、偶图;

(1) 图:一个图是一个序偶 < V , E > <V,E> <V,E>,记为 G = ( V , E ) G=(V,E) G=(V,E),其中:

  • 1) V V V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。用 ∣ V ∣ |V| V表示顶点数;
  • 2) E E E是由 V V V中的点组成的无序对构成的集合,称为边集,其元素称为边,且同一点对在 E E E中可以重复出现多次。用 ∣ E ∣ |E| E表示边数。

(2) 简单图:无环无重边的图称为简单图。

(3) 图的度序列: 一个图 G G G的各个点的度 d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn构成的非负整数组 ( d 1 , d 2 , … , d n ) (d_1, d_2,…, d_n) (d1,d2,,dn)称为 G G G的度序列 。
注: 度序列的判定问题是重点。

(4) 图的图序列:一个非负数组如果是某简单图的度序列,我们称它为可图序列,简称图序列。
注: 图序列的判定问题是重点。

(5) 图的同构:
设有两个图 G 1 = ( V 1 , E 1 ) G_1=(V_1, E_1) G1=(V1,E1) G 2 = ( V 2 , E 2 ) G_2=(V_2,E_2) G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:设 u 1 ↔ u 2 , v 1 ↔ v 2 , u 1 , v 1 ∈ V 1 , u 2 , v 2 ∈ V 2 ; u 1 v 1 ∈ E 1 u_1↔u_2 , v_1↔v_2, u_1,v_1 \in V_1, u2,v2 \in V_2; u_1v_1\in E_1 u1u2,v1v2,u1,v1V1,u2,v2V2;u1v1E1,当
且仅当 u 2 v 2 ∈ E 2 u_2v_2\in E_2 u2v2E2,且 u 1 v 1 u_1v_1 u1v1 u 2 v 2 u_2v_2 u2v2 的重数相同。称 G 1 G_1 G1 G 2 G_2 G2 同构,记为: G 1 ≅ G 2 G_1\cong G_2 G1G2

在这里插入图片描述

(6) 补图与自补图
1) 对于一个简单图 G = ( V , E ) G =(V, E) G=(V,E),令集合 E 1 = { u v ∣ u ≠ v , u , v ∈ V } E_1=\left\{u v|u\neq v,u, v \in V\right\} E1={uvu=v,u,vV}, 则图 H = ( V , E 1 \ E ) H =(V,E_1 \backslash E) H=(VE1\E) 称为 G G G 的补图,记为 H = G ‾ H=\overline{G} H=G
2) 对于一个简单图 G = ( V , E ) G =(V, E) G=(V,E),若 G ≅ G ‾ G\cong\overline{G} GG,称 G G G为自补图。
注:要求掌握自补图的性质。

(7) 联图
G 1 , G 2 G_1,G_2 G1,G2是两个不相交的图,作 G 1 + G 2 G_1+G_2 G1+G2,并且将 G 1 G_1 G1中每个顶点和 G 2 G_2 G2中的每个顶点连接,这样得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的联图。记为 : G 1 ∨ G 2 G_1\vee G_2 G1G2

(8) 积图
G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1=(V_1,E_1),G_2=(V_2,E_2) G1=(V1,E1),G2=(V2,E2) 是两个图。对点集 V = V 1 × V 2 V=V_1\times V_2 V=V1×V2 的任意两个点 u = ( u 1 , u 2 ) u=(u_1, u_2) u=(u1,u2) v = ( v 1 , v 2 ) v=(v_1, v_2) v=(v1,v2), 当 ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2   a d j   v 2 ) u_2 ~ adj ~ v_2) u2 adj v2) ( u 2 = v 2 (u_2=v_2 (u2=v2   u 1   a d j   v 1 ) ~u_1 ~ adj ~ v_1)  u1 adj v1)时,把 u u u v v v相连。如此得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的积图。记为 G = G 1 × G 2 \begin{array}{rcl}G=G_1\times G_2\end{array} G=G1×G2

(9) 偶图
所谓具有二分类 ( X , Y ) (X, Y) (X,Y)的偶图(或二部图)是指一个图,它的点集可以分解为两个(非空)子集 X X X Y Y Y,使得每条边的一个端点在中,另一个端点在 Y Y Y中.

注: 掌握偶图的判定。

2、树、森林,生成树,最小生成树、根树、完全 m m m元树。

(1) 树
不含圈的图称为无圈图,树是连通的无圈图。
(2) 森林
称无圈图 G G G为森林。
(3) 生成树
G G G的一个生成子图 T T T如果是树,称它为 G G G的一棵生成树;若 T T T为森林,称它为 G G G的一个生成森林。

生成树的边称为树枝, G G G中非生成树的边称为弦。

(4) 最小生成树
在连通边赋权图 G G G中求一棵总权值最小的生成树。该生成树称为最小生成树或最小代价树。
注: 要求熟练掌握最小生成树的求法。

(5) 根树
一棵非平凡的有向树 T T T,如果恰有一个顶点的入度为 0 0 0,而其余所有顶点的入度为 1 1 1,这样的的有向树称为根树。其中入度为 0 0 0的点称为树根,出度为 0 0 0的点称为树叶,入度为 1 1 1,出度大于 1 1 1的点称为内点。又将内点和树根统称为分支点。

(6) 完全 m m m元树
对于根树 T T T,若每个分支点至多 m m m个儿子,称该根树为 m m m元根树;若每个分支点恰有 m m m个儿子,称它为完全 m m m元树。

注: 对于完全 m m m元树,要弄清其结构。

3、途径(闭途径),迹(闭迹), 路(圈), 最短路,连通图,连通分支,点连通度与边连通度。

注: 上面概念分别在1和3章

4、欧拉图,欧拉环游,欧拉迹,哈密尔顿圈,哈密尔顿图,哈密尔顿路,中国邮路问题,最优H圈。

(1) 欧拉图与欧拉环游

对于连通图 G G G,如果 G G G中存在经过每条边的闭迹,则称 G G G为欧拉图,简称 G G G E E E图。欧拉闭迹又称为欧拉环游,或欧拉回路。

(2) 欧拉迹

对于连通图 G G G,如果 G G G中存在经过每条边的迹,则称该迹为 G G G的一条欧拉迹。

(3) 哈密尔顿图与哈密尔顿圈

如果经过图 G G G的每个顶点恰好一次后能够回到出发点,称这样的图为哈密尔顿图,简称 H H H图。所经过的闭途径是 G G G的一个生成圈,称为 G G G的哈密尔顿圈。

(4) 哈密尔顿路

G G G的经过每个顶点的路称为哈密尔顿路。

5、匹配、最大匹配、完美匹配、最优匹配、因子分解。

(1) 匹配

匹配 M M M— 如果 M M M是图 G G G的边子集(不含环),且 M M M中的任意两条边没有共同顶点,则称 M M M G G G的一个匹配或对集或边独立集。

(2) 最大匹配与完美匹配

最大匹配 M M M— 如果 M M M是图 G G G的包含边数最多的匹配,称 M M M G G G的一个最大匹配。特别是,若最大匹配饱和了G的所有顶点,称它为G的一个完美匹配。

(3) 最优匹配

G = ( X , Y ) G=(X, Y) G=(X,Y)是边赋权完全偶图, G G G中的一个权值最大的完美匹配称为 G G G的最优匹配。

(4) 因子分解

所谓一个图 G G G的因子分解,是指把图 G G G分解为若干个边不重的因子之并。

注: 要弄清楚因子分解和完美匹配之间的联系与区别。

6、平面图、极大平面图、极大外平面图、平面图的对偶图。

(1) 平面图: 如果能把图 G G G画在平面上,使得除顶点外,边与边之间没有交叉,称 G G G可以嵌入平面,或称 G G G是可平面图。可平面图 G G G的边不交叉的一种画法,称为 G G G的一种平面嵌入, G G G的平面嵌入表示的图称为平面图。

(2) 极大平面图: 设 G G G是简单可平面图,如果 G G G K i ( 1 ≦ i ≦ 4 ) K_i (1≦i≦4) Ki(1i4),或者在 G G G的任意非邻接顶点间添加一条边后,得到的图均是非可平面图,则称 G G G是极大可平面图。

极大可平面图的平面嵌入称为极大平面图。

(3) 极大外平面图:若一个可平面图 G G G存在一种平面嵌入,使得其所有顶点均在某个面的边界上,称该图为外可平面图。外可平面图的一种外平面嵌入,称为外平面图。

(4) 平面图的对偶图:给定平面图 G G G G G G的对偶图 G ∗ G^* G如下构造:
1) G G G的每个面 f i f_i fi内取一个点 v i ∗ v_i^* vi作为 G ∗ G^* G的一个顶点;
2) G G G的一条边 e e e, 若 e e e是面 f i f_i fi f j f_j fj 的公共边,则连接 v i ∗ v_i^* vi v j ∗ v_j^* vj,且连线穿过边 e e e;若 e e e是面 f i f_i fi中的割边,则以 v i v_i vi为顶点作环,且让它与 e e e相交。

7、边色数、点色数、色多项式

(1)、边色数

G G G是图,对 G G G进行正常边着色需要的最少颜色数,称为 G G G的边色数,记为: χ ′ ( G ) \chi^{\prime}(G) χ(G)

(2)、点色数

对图 G G G正常顶点着色需要的最少颜色数,称为图 G G G的点色数。图 G G G的点色数用 χ ( G ) \chi\left(G\right) χ(G) 表示。

(3)、色多项式

对图进行正常顶点着色,其方式数 P k ( G ) P_k(G) Pk(G) k k k的多项式,称为图 G G G的色多项式。

8、强连通图、单向连通图、弱连通图

(1)、强连通图
D D D的中任意两点是双向连通的,称 D D D是强连通图;

(2)、弱连通图
D D D的基础图是连通的,称 D D D是弱连通图;

(3)、单向连通图
D D D的中任意两点是单向连通的,称 D D D是单向连通图。

(二)、重要结论

1、握手定理及其推论

定理1: G = ( V , E ) G= (V, E) G=(V,E)中所有顶点的度的和等于边数 m m m 2 2 2倍,即: ∑ v ∈ V ( G ) d ( v ) = 2 m \sum_{v\in V(G)}d\left(v\right)=2m vV(G)d(v)=2m

推论1 在任何图中,奇点个数为偶数。

推论2 正则图的阶数和度数不同时为奇数 。

2、托兰定理

定理2 n n n阶简单图 G G G不包含 K l + 1 K_l+1 Kl+1,则 G G G度弱于某个完全 l l l 部图 H H H,且若 G G G具有与 H H H 相同的度序列,则:

G ≅ H G\quad\cong\quad H GH

3、树的性质

定理3 T T T ( n , m ) (n, m) (n,m)树,则: m = n − 1 m=n-1 m=n1

4、最小生成树算法

5、偶图判定定理

定理4 G G G是偶图当且仅当 G G G中没有奇回路。

6、敏格尔定理

定理5

  • (1) 设 x x x y y y是图 G G G中的两个不相邻点,则 G G G中分离点 x x x y y y的最小点数等于独立的 ( x , y ) (x, y) (x,y)路的最大数目;
  • (2)设 x x x y y y是图 G G G中的两个不相邻点,则 G G G中分离点 x x x y y y的最小边数等于 G G G中边不重的 ( x , y ) (x, y) (x,y)路的最大数目。

7、欧拉图、欧拉迹的判定

定理6 下列陈述对于非平凡连通图 G G G是等价的:
(1) G G G是欧拉图;
(2) G G G的顶点度数为偶数;
(3) G G G的边集合能划分为圈。

推论: 连通非欧拉图 G G G存在欧拉迹当且仅当 G G G中只有两个顶点度数为奇数。

8、 H H H图的判定

定理7 (必要条件) G G G H H H图,则对 V ( G ) V(G) V(G)的任一非空顶点子集 S S S,有: ω ( G − S ) ≤ ∣ S ∣ \omega(G-S)\leq\left|S\right| ω(GS)S

定理8 (充分条件) 对于 n ≧ 3 n≧3 n3的单图 G G G,如果 G G G中有:
δ ( G ) ≥ n 2 \delta\left(G\right)\geq\frac n2 δ(G)2n

定理9 (充分条件) 对于 n ≧ 3 n≧3 n3的单图 G G G,如果 G G G中的任意两个不相邻顶点 u u u v v v,有: d ( u ) + d ( v ) ≥ n d(u)+d(v)\geq n d(u)+d(v)n

定理10 (帮迪——闭包定理) G G G H H H图当且仅当它的闭包是 H H H图。

定理11(Chvátal——度序列判定法) 设简单图 G G G的度序列是 ( d 1 , d 2 , … , d n ) (d_1, d_2, …,d_n) (d1,d2,,dn), 这里, d 1 ≦ d 2 ≦ … ≦ d n d_1≦d_2≦…≦d_n d1d2dn, 并且 n ≧ 3 n≧3 n3. 若对任意的 m < n / 2 m<n/2 m<n/2,或者 d m > m d_m>m dm>m, 或者 d n − m ≧ n − m d_{n-m} ≧ n-m dnmnm, 则 G G G H H H图。

定理12 G G G n n n阶单图。若 n ≧ 3 n≧3 n3 ∣ E ( G ) ∣ > ( n − 1 2 ) + 1 \left|E\left(G\right)\right|>\binom{n-1}2+1 E(G)>(2n1)+1, 则 G G G H H H图;并且,具有 n n n个顶点 ( n − 1 2 ) + 1 \left.\left(\begin{array}{c}n-1\\2\end{array}\right.\right)+1 (n12)+1 条边的非 H H H图只有 C 1 , n C_{1,n} C1,n以及 C 2 , 5 C_{2,5} C2,5.

8、偶图匹配与因子分解

定理13 (Hall定理)设 G = ( X , Y ) G=(X, Y) G=(X,Y)是偶图,则 G G G存在饱和 X X X每个顶点的匹配的充要条件是:
对  ∀ S ⊆ X , 有 ∣ N ( S ) ∣ ≥ ∣ S ∣ ⋯ ( ∗ ) \text{对 }\forall S\subseteq X,\text{有}|N(S)|\geq|S|\cdots(*)  SX,N(S)S()

推论: G G G k ( k > 0 ) k (k>0) k(k>0)正则偶图,则 G G G存在完美匹配。

定理14 (哥尼,1931) 在偶图中,最大匹配的边数等于最小覆盖的顶点数。

定理15 K 2 n K_{2n} K2n可一因子分解。

定理16 具有 H H H圈的三正则图可一因子分解。

定理17 K 2 n + 1 K_{2n+1} K2n+1 2 2 2因子分解。

定理18 K 2 n K_{2n} K2n可分解为一个 1 1 1因子和 n − 1 n-1 n1 2 2 2因子之和。

定理19 每个没有割边的 3 3 3正则图是一个 1 1 1因子和 1 1 1 2 2 2因子之和。

最优匹配算法(见教材)

9、平面图及其对偶图

1)、平面图的次数公式

定理20 G = ( n , m ) G=(n, m) G=(n,m)是平面图,则:
∑ f ∈ ϕ deg ⁡ ( f ) = 2 m \sum_{f\in\phi}\deg(f)=2m fϕdeg(f)=2m

2)、平面图的欧拉公式

定理21(欧拉公式) G = ( n , m ) G=(n, m) G=(n,m)是连通平面图, ϕ \phi ϕ G G G的面数,则:
n − m + ϕ = 2 n-m+\phi=2 nm+ϕ=2

3)、几个重要推论

推论1 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的连通平面图,如果对 G G G的每个面 f f f ,有: d e g ( f ) ≥ l ≥ 3 deg (f) ≥ l ≥3 deg(f)l3,则: m ≤ l l − 2 ( n − 2 ) m\leq\frac l{l-2}(n-2) ml2l(n2)

推论2 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的简单平面图,则: m ≤ 3 n − 6 m\leq3n-6 m3n6

推论3 G G G是具有 n n n个点 m m m条边的简单平面图,则: δ ≤ 5 \delta\leq5 δ5

注: 掌握证明方法。

4)、对偶图的性质

定理22 平面图 G G G的对偶图必然连通.

5)、极大平面图的性质

定理23 设G是至少有3个顶点的平面图,则G是极大平面图,当且仅当G的每个面的次数是3且为单图。

10、着色问题

1)、边着色

定理24 χ ′ ( K m , n ) = Δ \chi^{\prime}(K_{m,n})=\Delta χ(Km,n)=Δ

定理25 (哥尼,1916) G G G是偶图,则 χ ′ ( G ) = Δ \chi^{\prime}(G)=\Delta χ(G)=Δ

定理26 (维津定理,1964) G G G是单图,则: χ ′ ( G ) = Δ 或  χ ′ ( G ) = Δ + 1 \chi^{\prime}(G)=\Delta\text{或 }\chi^{\prime}(G)=\Delta+1 χ(G)=Δ χ(G)=Δ+1

定理27 G G G是单图且 Δ ( G ) > 0 Δ(G)>0 Δ(G)>0。若 G G G中只有一个最大度点或恰有两个相邻的最大度点,则: χ ′ ( G ) = Δ ( G ) \chi^{\prime}(G)=\Delta(G) χ(G)=Δ(G)

定理28 G G G是单图。若点数 n = 2 k + 1 n=2k+1 n=2k+1且边数 m > k Δ m>kΔ m>kΔ, 则: χ ′ ( G ) = Δ ( G ) + 1 \chi^{\prime}(G)=\Delta(G)+1 χ(G)=Δ(G)+1

定理29 G G G是奇数阶 Δ Δ Δ正则单图, 若 Δ > 0 Δ>0 Δ>0, 则: χ ′ ( G ) = Δ ( G ) + 1 \chi^{\prime}(G)=\Delta(G)+1 χ(G)=Δ(G)+1

2)、点着色

定理30 对任意的图 G G G,有: χ ( G ) ≤ Δ ( G ) + 1 \left.\chi\left(G\right.\right)\leq\Delta\left(G\right.)+1 χ(G)Δ(G)+1

定理31(布鲁克斯,1941) G G G是连通的单图,并且它既不是奇圈,又不是完全图,则: χ ( G ) ≤ Δ ( G ) \chi\left(G\right)\leq\Delta\left(G\right) χ(G)Δ(G)

3)、色多项式

1)、递推计数法

定理32 G G G为简单图,则对任意 e ∈ E ( G ) e\in E(G) eE(G) 有: P k ( G ) = P k ( G − e ) − P k ( G • e ) P_k(G)=P_k(G-e)-P_k(G•e) Pk(G)=Pk(Ge)Pk(Ge)

2)、理想子图计数方法
  • (1) 画出 G G G的补图 G ‾ \overline{G} G
  • (2) 求出关于补图的 r i = N i ( G ‾ ) , ( 1 ≤ i ≤ n ) r_i=N_i(\overline{G}),(1\leq i\leq n) ri=Ni(G),(1in)
  • (3) 写出关于补图的伴随多项式 h ( G ‾ , x ) = ∑ i = 1 n r i x i h(\overline{G},x)=\sum_{i=1}^nr_ix^i h(G,x)=i=1nrixi
  • (4) 将 x i = [ k ] i x^i=[k]_i xi=[k]i 代入伴随多项式中得到 P k ( G ) P_k(G) Pk(G)

11、根树问题

定理32 在完全 m m m元树 T T T中,若树叶数为 t t t , 分支点数为 i i i, 则: ( m − 1 ) i = t − 1 (m-1)i=t-1 (m1)i=t1

(三)、图论应用

重点掌握如下两方面应用

1、 偶图匹配问题

在这里插入图片描述

2、 着色问题

1)、 边着色问题

在这里插入图片描述


在这里插入图片描述

2)、 点着色问题

在这里插入图片描述


在这里插入图片描述

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值