2021-01-12

vlog-5

直线与线段

y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y=\theta x_1+(1-\theta )x_2=x_2+\theta(x_1-x_2) y=θx1+(1θ)x2=x2+θ(x1x2)

X1和X2可以看成向量, θ \theta θ看作步长。从 x 2 x_2 x2出发的直线
如果 θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1],则表示的是线段

仿射集

C ∈ R n 是 仿 射 的 ⟺ 充 分 必 要 x 1 , x 2 ∈ C , θ ∈ R ( 任 意 常 数 ) , θ x 1 + ( 1 − θ ) x 2 ∈ C C\in R^n是仿射的 \stackrel{充分必要} \Longleftrightarrow %箭头 {x_1,x_2\in C,\theta \in R(任意常数),\theta x_1+(1-\theta)x_2\in C} CRn仿x1,x2C,θR()θx1+(1θ)x2C

解释: 如 果 集 合 C ⊆ R n 中 任 意 两 个 不 同 点 的 直 线 任 在 集 合 C 中 , 那 么 称 集 合 C 是 仿 射 的 。 如果集合C\subseteq R^n 中任意两个不同点的直线任在集合C中,那么称集合C是仿射的。 CRn线CC仿

仿射组合

简单来说就是推广仿射集

由 仿 射 集 可 知 x 1 θ 1 θ 1 + θ 2 + x 2 θ 1 θ 2 + θ 2 ∈ C 由仿射集可知x_1\frac{\theta_1}{\theta_1+\theta_2}+x_2\frac{\theta_1}{\theta_2+\theta_2} \in C % \frac{}{}分号 仿x1θ1+θ2θ1+x2θ2+θ2θ1C

令 x 1 θ 1 θ 1 + θ 2 + x 2 θ 1 θ 2 + θ 2 = x 13 ∈ C 令x_1\frac{\theta_1}{\theta_1+\theta_2}+x_2\frac{\theta_1}{\theta_2+\theta_2}=x_{13}\in C x1θ1+θ2θ1+x2θ2+θ2θ1=x13C

I F θ 1 + θ 2 + θ 3 = 1 , x 1 , x 2 , x 3 ∈ C IF \quad \theta_1+ \theta_2+ \theta_3=1,x_1,x_2,x_3\in C% \quad \quad空格 IFθ1+θ2+θ3=1x1,x2,x3C


( θ 1 + θ 2 ) ( x 1 θ 1 θ 1 + θ 2 + x 2 θ 1 θ 2 + θ 2 ) + ( 1 − θ 1 − θ 2 ) x 3 = ( θ 1 + θ 2 ) x 12 + ( 1 − θ 1 − θ 2 ) x 3 由 仿 射 集 可 知 上 式 也 ∈ C 所 以 将 上 式 展 开 得 到 下 式 = θ 1 x 1 + θ 2 x 2 + θ 3 x 3 ∈ C (\theta _1+\theta_2)(x_1\frac{\theta_1}{\theta_1+\theta_2}+x_2\frac{\theta_1}{\theta_2+\theta_2})+(1-\theta_1-\theta_2)x_3 \\ \\ %换行 =(\theta _1+\theta_2)x_{12}+(1-\theta_1-\theta_2)x_3 \\ \\由仿射集可知上式也\in C\quad 所以将上式展开得到下式 \\ \\=\theta_1x_1+\theta_2x_2+\theta_3x_3 \in C (θ1+θ2)(x1θ1+θ2θ1+x2θ2+θ2θ1)+(1θ1θ2)x3=(θ1+θ2)x12+(1θ1θ2)x3仿C=θ1x1+θ2x2+θ3x3C

也 就 是 可 以 证 明 出 ∀ x 1 , x 2 , x 3 ∈ C θ 1 + θ 2 + θ 3 = 1 } ⟹ θ 1 x 1 + θ 2 x 2 + θ 3 x 3 ∈ C 也就是可以证明出 \left. \begin{matrix} \forall x_1,x_2,x_3\in C \\ \theta_1+\theta_2+\theta_3=1 \end{matrix} \right\} \\ \Longrightarrow %箭头 \theta_1x_1+\theta_2x_2+\theta_3x_3 \in C x1,x2,x3Cθ1+θ2+θ3=1}θ1x1+θ2x2+θ3x3C

之 后 我 们 也 可 以 推 广 至 n 阶 ∀ x 1 , x 2 , x 3 , ⋯   , x n ∈ C θ 1 + θ 2 + θ 3 + ⋯ + θ n = 1 } ⟹ θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + ⋯ + θ n x n ∈ C 之后我们也可以推广至n阶 \\ % \\换行 \left. \begin{matrix} \forall x_1,x_2,x_3,\cdots,x_n\in C \\ % \cdots省略号 \theta_1+\theta_2+\theta_3+\cdots+\theta_n=1 \end{matrix} \right\} \Longrightarrow %箭头 \theta_1x_1+\theta_2x_2+\theta_3x_3 + \cdots +\theta_nx_n\in C 广nx1,x2,x3,,xnCθ1+θ2+θ3++θn=1}θ1x1+θ2x2+θ3x3++θnxnC

与C相关子空间

如 果 C 是 一 个 仿 射 集 并 且 x 0 ∈ C , 则 集 合 V = C − x 0 是 一 个 与 仿 射 集 合 C 相 关 联 的 子 空 间 , 与 x 0 关 如果C是一个仿射集并且x_0\in C,则集合\\ V=C-x_0是一个与仿射集合C相关联的子空间,与x_0关 C仿x0C,V=Cx0仿Cx0

解释:仿射集C中任意一点减去仿射集C中的一个任意一个点,得到的东西都一样,如果仿射集是条直线,那么得到的东西就是经过原点的直线,那么这条直线称之为与C相关子空间
在这里插入图片描述
证 明 令 v 1 , v 2 ∈ V , v 1 + x 0 ∈ C , v 2 + x 0 ∈ C , θ 1 + θ 2 = 1 则 θ 1 ( v 1 + x 0 ) + θ 2 ( v 2 + x 0 ) ∈ C θ 1 v 1 + θ 1 x 0 + θ 2 v 2 + θ 2 x 0 ∈ C θ 1 v 1 + θ 2 v 2 + x 0 ∈ C 解 释 θ 1 + θ 2 = 1 ∵ θ 1 v 1 + θ 2 v 2 ∈ V ∴ V = C − x 0 证明 \\ 令v_1,v_2\in V ,v_1+x_0\in C,v_2+x_0\in C,\theta_1+\theta_2=1 \\ 则\theta_1(v_1+x_0)+\theta_2(v_2+x_0)\in C \\ \theta_1 v_1+\theta_1 x_0+\theta_2 v_2+\theta_2x_0\in C \\ \theta_1v_1+\theta_2v_2+x_0\in C\quad\quad 解释\theta_1+\theta_2=1 \\ \because\theta_1v_1+\theta_2v_2\in V \\ \therefore V=C-x_0 v1,v2V,v1+x0C,v2+x0C,θ1+θ2=1θ1(v1+x0)+θ2(v2+x0)Cθ1v1+θ1x0+θ2v2+θ2x0Cθ1v1+θ2v2+x0Cθ1+θ2=1θ1v1+θ2v2VV=Cx0

仿射包

a f f c = { θ 1 x 1 + ⋯ + θ k x k ∣ x 1 , ⋯   , x k ∈ C , θ 1 + ⋯ + θ k = 1 } affc=\{\theta_1 x_1+ \cdots+\theta_k x_k|x_1,\cdots,x_k\in C,\theta_1+\cdots+\theta_k=1\} affc={θ1x1++θkxkx1,,xkC,θ1++θk=1}
看 不 懂 吧 , 注 释 : 仿 射 包 : 利 用 仿 射 集 合 构 造 集 合 C 的 最 小 仿 射 集 合 看不懂吧, \\注释:\\ 仿射包:利用仿射集合构造集合C的最小仿射集合 仿仿C仿

证 明 : a x 1 + ( 1 − a ) x 2 , β x 1 + ( 1 − β ) x 2 ∈ a f f c θ ∈ [ 0 , 1 ] 证明: \\ ax_1+(1-a)x_2,\quad\beta x_1+(1-\beta)x_2\in affc \\\theta\in [0,1] :ax1+(1a)x2,βx1+(1β)x2affcθ[0,1]
构 造 θ ( a x 1 + ( 1 − a ) x 2 ) + ( 1 − θ ) ( β x 1 + ( 1 − β ) x 2 ) 经 整 理 = ( 1 − β − θ a + θ β ) x 2 + ( β + θ a − θ β ) x 1 ∈ a f f c 构造\theta(ax_1+(1-a)x_2)+(1-\theta)(\beta x_1+(1-\beta)x_2)\quad 经整理 \\ =(1-\beta-\theta a+\theta \beta)x_2+(\beta+\theta a-\theta\beta)x_1 \in affc θ(ax1+(1a)x2)+(1θ)(βx1+(1β)x2)=(1βθa+θβ)x2+(β+θaθβ)x1affc
则 我 们 证 明 出 仿 射 集 中 两 点 进 行 仿 射 组 合 任 然 属 于 仿 射 集 合 C , 这 个 仿 射 集 我 们 称 之 为 仿 射 包 . 则我们证明出仿射集中两点进行仿射组合任然属于仿射集合C,\\这个仿射集 我们称之为仿射包. 仿仿仿C仿仿.

简 单 来 说 就 是 平 面 是 仿 射 集 , 平 面 上 有 一 条 直 线 , 直 线 上 两 点 进 行 仿 射 组 合 后 还 是 属 于 这 条 直 线 , 这 条 直 线 就 是 平 面 上 最 小 仿 射 集 , 也 就 是 仿 射 包 简单来说就是平面是仿射集,平面上有一条直线,直线上两点进行仿射组合\\ 后还是属于这条直线,这条直线就是平面上最小仿射集,也就是仿射包 仿线线仿线线仿仿

凸集

x 1 , x 2 ∈ C , θ ∈ [ 0 , 1 ] , θ x 1 + ( 1 − θ ) x 2 ∈ C {x_1,x_2\in C,\theta \in[0,1],\theta x_1+(1-\theta)x_2\in C} x1,x2C,θ[0,1]θx1+(1θ)x2C
仿射集中我们没有对 θ \theta θ限制,凸集中我们对 θ \theta θ进行了限制

仿射集合凸集关系:
因为仿射集的条件比凸集的条件强,所以仿射集必然是凸集。


C 是 凸 集 ⟺ 充 分 必 要 x 1 , x 2 ∈ C , θ ∈ [ 0 , 1 ] , θ x 1 + ( 1 − θ ) x 2 ∈ C C是凸集 \stackrel{充分必要} \Longleftrightarrow %箭头 {x_1,x_2\in C,\theta \in [0,1],\theta x_1+(1-\theta)x_2\in C} Cx1,x2C,θ[0,1]θx1+(1θ)x2C

C 是 任 意 集 合 ∀ x 1 , x 2 , x 3 , ⋯   , x n ∈ C θ 1 + θ 2 + θ 3 + ⋯ + θ n = 1 } ⟹ θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + ⋯ + θ n x n ∈ C 我 们 把 这 样 的 C 称 之 为 凸 集 C是任意集合\left. \begin{matrix} \forall x_1,x_2,x_3,\cdots,x_n\in C \\ % \cdots省略号 \theta_1+\theta_2+\theta_3+\cdots+\theta_n=1 \end{matrix} \right\} \Longrightarrow %箭头 \theta_1x_1+\theta_2x_2+\theta_3x_3 + \cdots +\theta_nx_n\in C\\ 我们把这样的C称之为凸集 Cx1,x2,x3,,xnCθ1+θ2+θ3++θn=1}θ1x1+θ2x2+θ3x3++θnxnCC
在这里插入图片描述

凸包

平面上一个点就是一个凸集,我们将平面上两点进行凸组合,构成一条直线,这条直线就是凸包。

∀ x 1 ∈ C , θ ≥ 0 , θ x 1 ∈ C ⟺ 充 分 必 要 非 负 齐 次 锥 \forall x_1\in C,\theta\ge0,\theta x_1\in C \stackrel{充分必要} \Longleftrightarrow %箭头 非负齐次锥 x1C,θ0,θx1C
简单理解直线是仿射的,凸集就是线段,锥就是一条射线
在这里插入图片描述

凸锥

x 1 , x 2 ∈ C , θ i ≥ 0 , θ i x i + θ 2 x 2 ∈ C ⟺ 充 分 必 要 凸 锥 x_1,x_2\in C,\theta_i\ge0,\theta_ix_i+\theta_2x_2\in C \stackrel{充分必要} \Longleftrightarrow %箭头 凸锥 x1,x2C,θi0,θixi+θ2x2C
进行凸组合之后还在集合内
在这里插入图片描述

凸锥组合

凸 锥 组 合 ⟹ x i , ⋯   , x k ∈ C , θ ≥ 0 , θ 1 x 1 + ⋯ + θ k x k 凸锥组合 \Longrightarrow %箭头 x_i, \cdots,x_k\in C,\theta\ge{0},\theta_1x_1+\cdots+\theta_kx_k xi,,xkC,θ0,θ1x1++θkxk
凸 锥 包 : 把 一 个 任 意 集 合 C , 利 用 凸 锥 组 合 的 方 法 形 成 一 个 新 的 集 合 , 是 凸 的 也 是 锥 的 ! 凸锥包:把一个任意集合C,利用凸锥组合的方法形成一个新的集合,是凸的也是锥的! C!
c o n i c C = { θ 1 x 1 + ⋯ + θ k x k ∣ x i ⋯ x k ∈ C , θ i ≥ 0 } conic\quad C=\{\theta_1x_1+\cdots+\theta_kx_k|x_i\cdots x_k \in C,\theta_i\ge{0}\} conicC={θ1x1++θkxkxixkC,θi0}
在这里插入图片描述
在这里插入图片描述

markdown与latex:书写单边大括号左边或右边即在没有括号的一端加点

                                                                                                             -2021-01-12

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值