【第1章】凸集——仿射集合和凸集


Date: 2020/04/04
Editor:萧潇子(Jesse)
Contact: 1223167600@qq.com


1.仿射集合和凸集

在介绍凸集概念之前,我们先介绍一下基本的集合概念

1.1直线与线段

假设空间 R n R^n Rn 中存在两个点 x 1 ≠ x 2 x_1 \neq x_2 x1=x2,考虑如下方程式:
y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) \begin{aligned} y&= \theta x_1 + (1-\theta) x_2 \\&= x_2 + \theta (x_1-x_2) \end{aligned} y=θx1+(1θ)x2=x2+θ(x1x2)

  •   θ ∈ R \ \theta \in R  θR,代表一条直线
  •   θ ∈ [ 0 , 1 ] \ \theta \in [0,1]  θ[0,1],代表线段 (见下图深色阴影所示)
  • 在这里插入图片描述

1.2仿射集合

定义:

一个集合是仿射集,若 ∀   x 1 ,   x 2   ∈   C \forall \ x_1,\ x_2\ \in\ C  x1, x2  C 则连接 x 1 x_1 x1 x 2 x_2 x2的直线也在集合内
把上述定义进行泛化:
设: x 1 x 2 , ⋯ x k ∈ C x_1x_2,\cdots x_k \in C x1x2,xkC, θ 1 , θ 2 , ⋯   , θ k ∈ R \theta_1,\theta_2,\cdots,\theta_k\in R θ1,θ2,,θkR θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k=1 θ1+θ2++θk=1

泛化(仿射组合):

θ 1 x 1 + θ 2 x 2 + ⋯ + θ k x k ∈ C \theta_1x_1 + \theta_2x_2 + \cdots + \theta_kx_k \in C θ1x1+θ2x2++θkxkC
证明:
假设存在三点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 , θ 1 + θ 2 + θ 3 = 1 \theta_1+\theta_2+\theta_3 = 1 θ1+θ2+θ3=1 首先考虑使用 x 1 , x 2 x_1,x_2 x1,x2 两点构建在 C C C内的一点:
θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ∈ C \frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2 \in C θ1+θ2θ1x1+θ1+θ2θ2x2C
加上 x 3 x_3 x3 构建:
( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ C (\theta_1+\theta_2)(\frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2) + (1-\theta_1-\theta_2)x_3 \in C (θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3C
展开上式得;
θ 1 x 1 + θ 2 x 2 + θ 3 x 3 ∈ C \theta_1x_1+\theta_2x_2+\theta_3x_3 \in C θ1x1+θ2x2+θ3x3C
因此泛化正确.

性质:

存在特殊仿射集合 V V V 满足更一般的情况:
α x 1 + β x 2 ∈ V α   β   ∈ R \alpha x_1 +\beta x_2 \in V \quad \alpha\ \beta \ \in R αx1+βx2Vα β R
如下图中绿色直线所示:
在这里插入图片描述

构造 V = C − x 0 = { x − x 0 ∣ x ∈ C } V = C -x_0=\{x-x_0|x\in C\} V=Cx0={xx0xC} ∀   x 0 ∈   C \forall \ x_0 \in \ C  x0 C

构造新的仿射集合 V V V是与 C C C相关的子空间 C C C平移 x 0 x_0 x0),子空间 V V V 经过原点

证明:

∀   v 1 , v 2 ∈ V \forall \ v_1,v_2 \in V  v1,v2V ∀   α ,   β ∈ R   ⇒ α v 1 + β v 2 ∈ V \forall \ \alpha, \ \beta \in R \ \Rightarrow \alpha v_1+\beta v_2 \in V  α, βR αv1+βv2V

即: α v 1 + β v 2 + x 0 ∈ C \alpha v_1+\beta v_2 +x_0\in C αv1+βv2+x0C

⇐ α ( v 1 + x 0 ) ∈ C + β ( v 2 + x 0 ) ∈ C + ( 1 − α − β ) x 0 ∈ C   ∈ C \Leftarrow \mathop{\alpha(v_1+x_0)}\limits_{\in C}+\mathop{\beta(v_2+x_0)}\limits_{\in C}+\mathop{(1-\alpha-\beta)x_0}\limits_{\in C}\ \in C Cα(v1+x0)+Cβ(v2+x0)+C(1αβ)x0 C

例子:
线性方程组的解集是仿射集(反之也成立)
C = { x ∣ A x = b }    ∀ ∈ R m × n    b ∈ R m   x ∈ R n C=\{x|Ax=b\} \ \ \forall \in R^{m\times n} \ \ b\in R^m \ x\in R^n C={xAx=b}  Rm×n  bRm xRn

构造新的子空间仿射集:
V = { x − x 0 ∣ x ∈ C } ∀ x 0 ∈ C = { x − x 0 ∣ A x = b } A x 0 = b = { x − x 0 ∣ A ( x − x 0 ) = 0 } = { y ∣ A y = 0 } → 化 零 空 间 \begin{aligned} V &= \{x-x_0|x\in C\}\quad \forall x_0 \in C\\ &= \{x-x_0|Ax=b\}\quad Ax_0=b \\ &= \{x-x_0|A(x-x_0)=0\} \\ &= \{y|Ay=0\}\rightarrow 化零空间 \end{aligned} V={xx0xC}x0C={xx0Ax=b}Ax0=b={xx0A(xx0)=0}={yAy=0}

任意集合 C C C, 构造尽可能小的仿射集
仿射包 a f f C = { θ 1 x 1 + ⋯ + θ k x k   ∣   ∀ x 1 , ⋯   , x k ∈ C ,   ∀ θ 1 + ⋯ + θ k = 1 } \mathop{aff}C=\{\theta_1 x_1+\cdots +\theta_k x_k\ |\ \forall x_1,\cdots,x_k\in C,\ \forall \theta_1+\cdots+\theta_k=1\} affC={θ1x1++θkxk  x1,,xkC, θ1++θk=1}


1.3凸集

定义:

一个集合 C C C是凸集,当任意连接两点,空间的两点仍然在 C C C
C C C is convex ⟺ \Longleftrightarrow ∀ x 1 , x 2 ∈ C     ∀   θ ∈ [ 0 , 1 ]    θ x 1 + ( 1 − θ ) x 2 ∈ C \forall x_1,x_2 \in C \ \ \ \forall \ \theta \in [0,1] \ \ \theta x_1+(1-\theta)x_2 \in C x1,x2C    θ[0,1]  θx1+(1θ)x2C (凸集是仿射集的特例)

设: x 1 x 2 , ⋯ x k ∈ C x_1x_2,\cdots x_k \in C x1x2,xkC, θ 1 , θ 2 , ⋯   , θ k ∈ R \theta_1,\theta_2,\cdots,\theta_k\in R θ1,θ2,,θkR & θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k=1 θ1+θ2++θk=1 & $\theta_1 \cdots \theta_k \in [0,1] $

泛化:

凸组合 θ 1 x 1 + θ 2 x 2 + ⋯ + θ k x k ∈ C \theta_1x_1 + \theta_2x_2 + \cdots + \theta_kx_k \in C θ1x1+θ2x2++θkxkC, ∀ x 1 , ⋯   , x k ∈ C ,   ∀ θ 1 ⋯ θ k ∈ [ 0 , 1 ] ,   ∀ θ 1 + ⋯ + θ k = 1 \forall x_1,\cdots,x_k\in C,\ \forall \theta_1\cdots\theta_k\in [0,1],\ \forall \theta_1+\cdots+\theta_k=1 x1,,xkC, θ1θk[0,1], θ1++θk=1

C C C为凸集 ⇔ \Leftrightarrow 任意元素凸组合 ∈ C \in C C

凸包 C ∈ R n C\in R^n CRn

C = { θ 1 x 1 + ⋯ + θ k x k   ∣   ∀ x 1 , ⋯   , x k ∈ C ,   ∀ θ 1 ⋯ θ k ∈ [ 0 , 1 ] ,   ∀ θ 1 + ⋯ + θ k = 1 } C=\{\theta_1 x_1+\cdots +\theta_k x_k\ |\ \forall x_1,\cdots,x_k\in C,\ \forall \theta_1\cdots\theta_k\in [0,1],\ \forall \theta_1+\cdots+\theta_k=1\} C={θ1x1++θkxk  x1,,xkC, θ1θk[0,1], θ1++θk=1}

在这里插入图片描述


1.4锥 凸锥

定义:

C C C是锥 ⇔ \Leftrightarrow ∀   x ∈ C \forall \ x\in C  xC θ ≥ 0 \theta\ge0 θ0 θ x ∈ C \theta x\in C θxC

C C C是凸锥 ⇔ \Leftrightarrow ∀   x 1 , x 2 ∈ C \forall \ x_1,x_2\in C  x1,x2C θ 1 , θ 2 ≥ 0 \theta_1,\theta_2\ge0 θ1,θ20 x 1 θ 1 + x 2 θ 2 ∈ C x_1\theta_1+x_2\theta_2\in C x1θ1+x2θ2C
在这里插入图片描述
泛化:

凸锥组合 θ 1 x 1 + θ 2 x 2 + ⋯ + θ k x k \theta_1x_1 + \theta_2x_2 + \cdots + \theta_kx_k θ1x1+θ2x2++θkxk , θ 1 ⋯ θ k ≥ 0 {\theta_1 \cdots \theta_k \ge 0} θ1θk0

凸锥包 C = { θ 1 x 1 + ⋯ + θ k x k   ∣   ∀ x 1 , ⋯   , x k ∈ C , θ 1 ⋯ θ k ≥ 0 } C=\{\theta_1 x_1+\cdots +\theta_k x_k\ |\ \forall x_1,\cdots,x_k\in C,\theta_1 \cdots \theta_k \ge 0 \} C={θ1x1++θkxk  x1,,xkCθ1θk0}

在这里插入图片描述


1.5总结

  • 仿射组合: ∀ θ 1 , θ 2 , ⋯   , θ k ∈ R \forall \theta_1,\theta_2,\cdots,\theta_k\in R θ1,θ2,,θkR, θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k=1 θ1+θ2++θk=1
  • 凸组合: ∀ θ 1 , θ 2 , ⋯   , θ k ∈ R \forall \theta_1,\theta_2,\cdots,\theta_k\in R θ1,θ2,,θkR, θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k=1 θ1+θ2++θk=1 , θ 1 ⋯ θ k ∈ [ 0 , 1 ] \theta_1\cdots\theta_k\in [0,1] θ1θk[0,1]
  • 凸锥组合: ∀ θ 1 , θ 2 , ⋯   , θ k ∈ R \forall \theta_1,\theta_2,\cdots,\theta_k\in R θ1,θ2,,θkR, θ 1 ⋯ θ k ≥ 0 \theta_1 \cdots \theta_k \ge 0 θ1θk0

1.6参考

1、Stephen Boyd 、Lieven Vandenberghe——《Convex Optimization》)
2、中科大凌青凸优化 (https://www.bilibili.com/video/BV1Jt411p7jE?)

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值