卷积神经网络---CNN模型的应用(找矿预测)

一、CNN的结构

卷积神经网络的找矿预测模型主要由数据输入层、卷积层、池化层、全连接层和输出层5种网络层。

数据输入层是将网格化的化探和航磁数据作为输入数据写入神经单元,卷积层与池化层分别选择合适的激活函数完成对数据特征的提取和下采样,全连接层则是在网络末端实现特征的映射和分类,而输出层可用于结果输出或特征可视化。本文采用的卷积神经网络模型由4个卷积层、4个池化层和1个全连接层组成。

卷积层(convolution):卷积神经网络的核心,体现卷积神经网络的局部连接和权值共享特性。先用特定尺寸的卷积核(权值矩阵)提取整体数据的局部特征,然后通过步长平移的方式提取不同位置的数据特征。卷积核相当于过滤器,用于提取数据特征,特征提取后会得到一个特征图。卷积后,通常会引入非线性激活函数(也称为非线性映射函数),对神经网络模型学习、理解非常复杂的目标域具有重要意义。本文使用的激活函数为RuLU函数。该函数在保证训练效果的同时可以加快训练速度。

池化层(pooling):压缩输入的特征数据,简化网络复杂度,提取主要特征。池化操作相当于降维操作,有最大池化和平均池化,本文使用的是最大池化。经过卷积操作提取到的特征空间,相邻区域会有相似特征信息,若全部保留会存在信息冗余,增加计算难度。通过池化层不断减小数据的空间,使参数的数量和计算量会有相应的下降,一定程度上控制了过拟合。

全连接层(fully connected layers):全连接层上的每一个结点都与上一层的所有结点相连,用来把之前提取到的特征综合起来。n-1层的任意一个节点都和第n层所有节点有连接,即第n层的每个节点在计算时,激活函数的输入是n-1层所有节点的加权。

二、CNN找矿预测流程

对元素地球化学异常数据、航磁数据进行网格化的基础上,采用数据增强技术获取训练数据和验证数据集,再基于卷积神经网络训练生成模型,并应用训练好的模型预测研究区的有利找矿部位。

 

三、数据的收集与处理

利用地球化学异常数据和航磁数据,提取已知的矿床信息。

因收集的数据在空间上不均匀分布,需要利用插值方法将其转化为规则网格数据。在本文中应用克里格法实现二维数据的格网化,得到25种元素地球化学异常数据和3种航磁数据的网格化数据。每种数据都通过Surfer软件转换成432×316的网格数据层(每个网格的规模是100×100)。

(1)地化数据

研究 区 有 Ag、As、Au、B、Be、Bi、Cd、Co、Cr、 Cu、Hg、La、Li、Mn、Mo、Nb、Ni、Pb、Sb、Sn、Th、Ti、U、W 和 Zn等 25 种元素水系沉积物化探测量数据,每种元素水系沉积物化探测量数据都反映了该区域不同的元素特征。利用Surfer软件对25种元素进行网格化,对数据进行网格化可将空间上分散的数值转换成规则分布的网格数值,抑制局部噪音,并按规则对空白网格赋予数值,得到统一的空间结构,能充分反映客体变量的空间模式。对比几种插值方法,克里格方法能反映距离关系,而且能够通过变异函数和结构分析,确定已知样本点的空间分布及与未知样点的空间方位关系。本文利用克里格插值法,将网格单元大小设为100m×100 m(表1),得到25种水系沉积物化探网格化数据,总网格单元数为432×316=136512个

 用克里格插值法对Cu、Mo、Zn和As4种元素,按100m×100m 网格单元大小进行网格化,绘制1:5万等值线图。对比图1,发现4种元素均在大青山附近有明显异常(区域内含已发现的大青山铜矿区域),Cu、 Mo在盘头山和窑泉北有异常:盘头山异常范围大,处于海西中期花岗闪长岩中,有一定找矿潜力;窑泉北异常地处位置边缘,有英云闪长岩出露,有一定找矿潜力。Zn、As在方架山南也有异常反映,该区域异常有侵入岩体,以加里东期酸性岩为主,出露有二长花岗岩和正长花岗岩区,区域南侧有英云闪长岩,出露面积较小。 

 

(2)航磁数据

研究区有3幅1:5万的航磁数据,用克里格插值法对航磁数据进行网格化,100m×100m 的网格单元大小(与表1同)利用 Geosoft软件对 数据进行处理,得到ΔT化极航磁异常图(图6a),之后需使用航磁延拓数据,向上延拓主要是对浅部地质体的干扰进行压制或消除,对深部有意义的地质体产生有用的磁性异常进行突出和显示。对网格化之后的数据分别进行向上50m(图6b)、100m(图6c)和150m(图6d)的延拓。本文需要用到的是ΔT化极航磁异常图、50m 向上延拓图和100m 向上延拓图。

图6a可知:磁异常条带的延伸方向呈NW向,主要存在南北2个高磁异常带;对比图1,北部高磁异常带位于该区北部大青山— 天城北西西—东西向带状高磁异常区带,带内为以中酸性侵入岩为主的巨大岩浆带,异常大多数由闪长岩体等中酸性侵入岩引起,沿北部磁异常条带发现了铜矿床(点)。

图6b可知:该地区磁异常较为集中,主要集中在研究区中西部及西南部两处。为进一步消除影响,继续进行100m 延拓(图6c)和150m延拓(图6d),发现磁异常区域主要集中在中西部及西南部,在后期进行成矿有利区圈定应该尽量集中在磁异常区域。

为展现研究区航磁异常方向性的变化特征, 对研究区网格化之后的原数据在不同方向上进行求导,分别求出该研究区0°(图6e)、45°(图6f)、90°(图 6g)和135°(图6h)的方向导 图。结果表明,求导后,研究区航磁异常区主要呈 NW 向展布,也 显示出一些NE向变化特征。

(3)矿点成矿地质特征

研究区已知铜矿点有4个,分别为大青山Ⅰ号铜矿、大青山Ⅱ号铜矿、大青山Ⅲ号铜矿、未定名Ⅳ号铜矿。铜矿主要发育在大青山地区,铜矿的类型主要为斑岩型铜矿和裂隙浸染型铜矿。

四、训练与验证数据集的生成

研究区内已知矿床点的数量较少,难以满足深度学习对训练样本量的要求,构建大容量训练样本是深度学习找矿预测模型建模过程的一个挑战。本文用步长平移数据增强方法构建训练样本集,从而得到泛化能力更强的网络,使结果更具可信度。

步长平移数据增强方法:用一定窗口大小(即卷积核大小,如48*48=2304个网格单元),通过移动窗口使矿床点位于1个网格单元中,提取窗口所包括的所有物探和化探网格数据,遍历所有窗口网格单元。对于1个矿床点可以获取2304个训练单元。如果研究区内有n个矿床点,则可以获得2304n个训练单元。在研究区随机选取已知矿床点数2倍的网格单元作为未知区,采用上述相同的方法获取未知区的训练单元。

五、卷积神经网络模型构建、训练与验证

用准备好的训练数据集对模型进行训练与验证,再采用不同的参数和超参数进行训练,通过验证数据集选取最优模型。

输入的数据层25种元素地球化学异常数据+3种航磁数据的网格化数据 = 28种数据,每种数据都通过Surfer软件转换成了432×316的网格数据层(研究区域的划分,覆盖实际范围相当于43200m×31600m,数据网格化是将空间上分散的数值转换成规则分布的网格数值,按规则对空白网格赋予数值,得到统一的空间结构)。对每种类型的数据均采用离差标准化方法进行处理,用主成分分析法(PCA)把28维数据层压缩为24维。窗口大小设定为48×48个网格单元(研究区域的一小块,可滑动,窗口覆盖的实际范围相当于4800m×4800m),每个窗口的输入数据通道数为28(?已经降维成24了呀),卷积核的大小为3×3,第一层卷积核数量为48(?卷积核的数量要怎么确定呢),步长设置为1,模型的优化算法用Adam 算法,学习率设为0.001,衰减率设置为默认值。

训练数据集和验证数据集是根据已知3个铜矿点,采用数据增强方法获取了22934个训练数据(2304*9=20736)。70%的数据用于训练模型,包括16054个训练数据;30% 用于模型验证,包括6880个训练数据。

采用上述参数及数据集对模型进行了200轮训练和验证。结果显示进行了50轮训练后,模型趋于稳定,模型精度为98.1%左右

六、找矿预测区的确定

用训练好的模型,通过滑动窗口的方式对研究区进行预测,圈定有利预测去,并根据矿产地质资料,分析预测结果的可靠性,从而确定找矿预测区。 

用训练好的模型对研究区的有利铜矿找矿区进行了预测。从预测结果图(图8)可看出,CNN模型得到研究区5个找矿有利区。P-1:位于山头窑—窑泉—大青山北一带,预测区内包含已知的4个铜矿点;P-2:位于窑泉北东部地区;P-3:位于盘头山附近;P-4:主要地层为蓟县系墩子沟群变砂岩、变粒岩,。P-5:位于研究区南部;都有 Cu元素化探异常高值

 

七、预测结果的影响因素分析

1.超参数对预测结果的影响

(1)PCA主分量数

PCA主要思想:将n维特征映射到k维上,在原有n维特征的基础上重新构造出来的k维特征。28维数据对计算机运算太过冗杂,对数据维度进行压缩,产生的预测结果不同,对比4种PCA主分量数对预测结果的影响。

维度越高,所得的预测区域越复杂,但总体有一定的相似性,将28维数据压缩为24维数据所得的预测结果更符合实际地质情况

 (2)窗口大小

窗口越大,能够提取的训练数据集也越大,当窗口大小分别为12×12、24×24、48×48时, 可提取训练样本数分别为3056、8048、22934。采用较大的窗口,获得的训练样本数据较多,则获得的预测范围相对较小。

对比3种预测结果图,预测区的总体位置相似。当窗口大小为48×48时,预测区的范围相对较小,此时产生的训练样本数较多,模型所得的预测区精度较高。

 (3)卷积核的数量

卷积核数量直接影响了输入的局部特征,卷积核数量越多,提取到的局部特征就越多.

比较3种不同卷积核数量,预测区的总体位置相似,当初始的卷积核数量为48时,预测区的范围相对较小,且更符合地质情况。

 (4)步长

卷积层中的步长表示卷积核一次移动多少个格子。对比3种步长所得的预测结果,发现步长增大,预测结果精细程度降低。对比地质图、地球化学元素异常图和航磁异常图可 ,当步长为1时更具有可信度。

 (5)抓取的样本数量

Batch_size为一次训练所抓取的数据样本数量。适当的Batch_size可使梯度方差减小,梯度更加准确,使得预测结果更加准确。

对比3种 不 同 的Batch_size,每一次训练所抓取的数据样本量不同的话,所得的预测结果虽然大体位置相同,但预测面积变化较 大。对比元素地球化学异常图、航磁异常图和地质图,发现当Batch_size为64时,所得的预测结果比较可靠。

2.不同数据集对预测结果的影响

鄂选取25种化探元素数据、3种航磁数据、综合25种化探元素数据与3 种航磁数据作为输入数据进行实验

3.不同网格单元大小对预测结果的影响

设定窗口大小为48×48,卷积核的大小为3×3, 第一层卷积核数量为48,步长设置为1,Batch_size为64,输入的数据为压缩24维的化探元素数据和航磁数据,对比50m 网格的输入数据和100m 网格的输入数据。

参考文献:基于卷积神经网络的智能找矿...—以甘肃龙首山地区铜矿为例_李忠潭

  • 5
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值