educoder第10关:补码一位乘法器设计

本实验旨在让学生掌握补码一位乘法运算原理及Logisim寄存器电路设计。任务是设计一个8*8位的补码Booth一位乘法器,通过增加控制电路和数据通路,使其能自动完成运算,并在运算结束后停止。完成设计后,可将电路内容上传至Educoder平台进行自动测试。
摘要由CSDN通过智能技术生成

实验目的
学生掌握补码一位乘法运算的基本原理,熟练掌握 Logisim 寄存器电路的使用,能在 Logisim 平台中设计实现一个8*8 位的补码 Booth一位乘法器。

实验内容
在 alu.circ 文件中的补码一位乘法器子电路中,增加控制电路和数据通路,使得该电路能自动完成8位补码一位乘法运算。再设置引脚初始值,然后驱动时钟自动仿真,电路可自动完成运算。运算结束,结果传输到输出引脚。运算结束时,电路应该自动停止。

电路框架
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
电路测试
实验完成后,可利用文本编辑工具打开 alu.circ,将所有文字信息复制粘贴到 Educoder 平台的 alu.circ 文件中,再点击评测按钮即可进行本关测试。平台会对你设计的电路进行自动测试,为方便测试,请勿修改子电路封装,本关测试用例如下:

(1)用[X]补×[Y]补直接求[X×Y]补 讨论当相乘的两个数中有一个或二个为负数的情况,在讨论补码乘法运算时,对被乘数或部分积的处理上与原码乘法有某些类似,差别仅表现在被乘数和部分积的符号位要和数值一起参加运算。 若[Y]补=Y0Y1Y2…Yn 当Y0为1时,则有Y=-1+Yi×2-i 故有 X×Y=X×Yi×2-1-X当Y为负值时,用补码乘计算[X×Y]补,是用[X]补乘上[Y]补的数值位,而不理[Y]补符号位上的1,乘完之后,在所得的乘积中再减X,即加-[X]补。实现补码乘法的另一个方案是比较法,是由BOOTH最早提出的,这一方法的出发点是避免区分乘数符号的正负,而且让乘数符号位也参加运算。技巧上表现在分解乘数的每一位上的1为高一位的一个+1和本位上的一个-1:X×Y=X×(-1+Yi×2i) (逐项展开则得)=X×[-Y0+Y1×2-1+Y2×2-2+…+Yn×2-n]=X×[-Y0+(Y1-Y1×2-1)+(Y2×2-1-Y2×2-2)+…+(Yn×2-(n-1)-Yn×2-n)](合并相同幂次项得) =X×[(Y1-Y0)+(Y2-Y1) ×2-1+…+(Yn-Yn-1) ×2-(n-1)+(0-Yn) ×2-n]=X×(Yi+1-Yi)×2-i(写成累加求和的形式,得到实现补码乘运算的算法)将上述公式展开,则每一次的部分积为: P1=[2-1(Yn+1-Yn) ×X]补 P2=[2-1(P1+(Yn-Yn-1) ×X)]补 … Pi=[2-1(Pn-i+(Yn-I+2-Yn-I+1) ×X)]补 … Pn=[2-1(Pn-1+(Y2-Y1) ×X)]补 Pn+1=[ (Pn+(Y1-Y0) ×X)]补 则最终补码乘积为[X*Y]补=[Pn+1]补 由上述公式可以看出,比较法是用乘数中每相邻的两位判断如何求得每次的相加数。每两位Yi和Yi+1的取值有00,01,10,11四种组合,则它们的差值分别为0,1,-1和0,非最后一次的部分积,分别为上一次部分积的1/2(右移一位)的值Rj,Rj+[X]补,Rj-[X]补(即Rj+[-X]补)和Rj,但一定要注意:最后一次求出的部分积即为最终乘积,不执行右移操作。用此法计算乘积,需要乘数寄存器的最低一位之后再补充一位Yn+1,并使其初值为0,再增加对Yn和Yn+1两位进行译码的线路,以区分出Yn+1-Yn 4种不同的差值。对N位的数(不含符号位)相乘,要计算N+1次部分积,并且不对最后一次部分积执行右移操作。此时的加法器最好采用双符号位方案。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值