排序模型
通过召回的操作, 我们已经进行了问题规模的缩减, 对于每个用户, 选择出了N篇文章作为了候选集,并基于召回的候选集构建了与用户历史相关的特征,以及用户本身的属性特征,文章本省的属性特征,以及用户与文章之间的特征,下面就是使用机器学习模型来对构造好的特征进行学习,然后对测试集进行预测,得到测试集中的每个候选集用户点击的概率,返回点击概率最大的topk个文章,作为最终的结果。
排序阶段选择了三个比较有代表性的排序模型,它们分别是:
LGB的排序模型
LGB的分类模型
深度学习的分类模型DIN
得到了最终的排序模型输出的结果之后,还选择了两种比较经典的模型集成的方法:
输出结果加权融合
Staking(将模型的输出结果再使用一个简单模型进行预测)
导包
import numpy as np
import pandas as pd
import pickle
from tqdm import tqdm
import gc, os
import time
from datetime import datetime
import lightgbm as lgb
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.filterwarnings('ignore')
data_path = './data_raw/'
save_path = './temp_results/'
offline = False
# 重新读取数据的时候,发现click_article_id是一个浮点数,所以将其转换成int类型
trn_user_item_feats_df = pd.read_csv(save_path + 'trn_user_item_feats_df.csv')
trn_user_item_feats_df['click_article_id'] = trn_user_item_feats_df['click_article_id'].astype(int)
if offline:
val_user_item_feats_df = pd.read_csv(save_path + 'val_user_item_feats_df.csv')
val_user_item_feats_df['click_article_id'] = val_user_item_feats_df['click_article_id'].astype(int)
else:
val_user_item_feats_df = None
tst_user_item_feats_df = pd.read_csv(save_path + 'tst_user_item_feats_df.csv')
tst_user_item_feats_df['click_article_id'] = tst_user_item_feats_df['click_article_id'].astype(int)
# 做特征的时候为了方便,给测试集也打上了一个无效的标签,这里直接删掉就行
del tst_user_item_feats_df['label']
返回排序后的结果
def submit(recall_df, topk=5, model_name=None):
recall_df = recall_df.sort_values(by=['user_id', 'pred_score'])
recall_df['rank'] = recall_df.groupby(['user_id'])['pred_score'].rank(ascending=False, method='first')
# 判断是不是每个用户都有5篇文章及以上
tmp = recall_df.groupby('user_id').apply(lambda x: x['rank'].max())
assert tmp.min() >= topk
del recall_df['pred_score']
submit = recall_df[recall_df['rank'] <= topk].set_index(['user_id', 'rank']).unstack(-1).reset_index()
submit.columns = [int(col) if isinstance(col, int) else col for col in submit.columns.droplevel(0)]
# 按照提交格式定义列名
submit = submit.rename(columns={'': 'user_id', 1: 'article_1', 2: 'article_2',
3: 'article_3', 4: 'article_4', 5: 'article_5'})
save_name = save_path + model_name + '_' + datetime.today().strftime('%m-%d') + '.csv'
submit.to_csv(save_name, index=False, header=True)
注意:
1.pandas rank()函数用法:
rank函数返回从小到大排序的下标
(1)默认情况下,rank是通过“为各组分配一个平均排名”的方式破坏平级关系的
In [120]:obj = pd.Series([7,-5,7,4,2,0,4])
In [121]:obj.rank()
Out [121]:
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5
dtype: float64
(2)根据值在原数据中出现的顺序排名
In [122]:obj.rank(method='first')
Out [122]:
0 6.0
1 1.0
2 7.0
3 4.0
4 3.0
5 2.0
6 5.0
dtype: float64
(3)按降序进行排名
In [123]:obj.rank(ascending=False, method='max')
Out [123]:
0 2.0
1 7.0
2 2.0
3 4.0
4 5.0
5 6.0
6 4.0
dtype: float64
(4)若对DataFrame进行排序,则可根据axis指定要进行排序的轴
In [136]: frame=pd.DataFrame({'b':[5,7,-3,2],'a':[0,1,0,1],'c':[-2,5,8,-3]})
In [137]: frame
Out[137]:
a b c
0 0 5 -2
1 1 7 5
2 0 -3 8
3 1 2 -3
In [138]: frame.rank(axis=0)
Out[138]:
a b c
0 1.5 3.0 2.0
1 3.5 4.0 3.0
2 1.5 1.0 4.0
3 3.5 2.0 1.0
In [139]: frame.rank(axis=1)
Out[139]:
a b c
0 2.0 3.0 1.0
1 1.0 3.0 2.0
2 2.0 1.0 3.0
3 2.0 3.0 1.0
# 排序结果归一化
def norm_sim(sim_df, weight=0.0):
# print(sim_df.head())
min_sim = sim_df.min()
max_sim = sim_df.max()
if max_sim == min_sim:
sim_df = sim_df.apply(lambda sim: 1.0)
else:
sim_df = sim_df.apply(lambda sim: 1.0 * (sim - min_sim) / (max_sim - min_sim))
sim_df = sim_df.apply(lambda sim: sim + weight) # plus one
return sim_df