08—《动手学深度学习——Pytorch版》—模型选择 + 过拟合和欠拟合

本文通过多项式回归实例探讨了过拟合和欠拟合的概念,展示了如何通过不同阶数的多项式拟合数据,以及如何通过正则化来解决过拟合问题。关键点包括训练和测试误差、模型复杂度与泛化能力的关系。
摘要由CSDN通过智能技术生成


前言

作为机器学习科学家,我们的目标是发现模式(pattern)。 但是,我们如何才能确定模型是真正发现了一种泛化的模式, 而不是简单地记住了数据呢? 例如,我们想要在患者的基因数据与痴呆状态之间寻找模式, 其中标签是从集合痴呆轻度认知障碍健康
中提取的。 因为基因可以唯一确定每个个体(不考虑双胞胎), 所以在这个任务中是有可能记住整个数据集的。

我们不想让模型只会做这样的事情:“那是鲍勃!我记得他!他有痴呆症!”。 原因很简单:当我们将来部署该模型时,模型需要判断从未见过的患者。 只有当模型真正发现了一种泛化模式时,才会作出有效的预测。

更正式地说,我们的目标是发现某些模式, 这些模式捕捉到了我们训练集潜在总体的规律。 如果成功做到了这点,即使是对以前从未遇到过的个体, 模型也可以成功地评估风险。 如何发现可以泛化的模式是机器学习的根本问题。

困难在于,当我们训练模型时,我们只能访问数据中的小部分样本。 最大的公开图像数据集包含大约一百万张图像。 而在大部分时候,我们只能从数千或数万个数据样本中学习。 在大型医院系统中,我们可能会访问数十万份医疗记录。 当我们使用有限的样本时,可能会遇到这样的问题: 当收集到更多的数据时,会发现之前找到的明显关系并不成立。

将模型在训练数据上拟合的比在潜在分布中更接近的现象称为过拟合(overfitting), 用于对抗过拟合的技术称为正则化(regularization)。 在前面的章节中,有些读者可能在用Fashion-MNIST数据集做实验时已经观察到了这种过拟合现象。 在实验中调整模型架构或超参数时会发现: 如果有足够多的神经元、层数和训练迭代周期, 模型最终可以在训练集上达到完美的精度,此时测试集的准确性却下降了。


模型选择

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


过拟合与欠拟合

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


代码部分

多项式回归

我们现在可以通过多项式拟合来探索这些概念。

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
import util

生成数据集

在这里插入图片描述

max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])  # w前四项设值,后面全是0

features = np.random.normal(size=(n_train + n_test, 1))  # 生成200*1的随机正态分布的特征(feature是二维200*1)
np.random.shuffle(features)  # 打乱
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))  # 第一列做成全1的偏置,200*20的预测值,power表示求次方,越后面的列值越大,故后面要除以阶乘
for i in range(max_degree):  # 循环20轮
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!为了避免过大的梯度,除以阶乘
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)  # X(poly_features)与w作矩阵相乘得到y(labels)
labels += np.random.normal(scale=0.1, size=labels.shape)  # 加上偏置噪声b

在这里插入图片描述
在这里插入图片描述

对模型进行训练和测试

首先让我们实现一个函数来评估模型在给定数据集上的损失。

def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = util.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]  # 计算平均损失

现在定义训练函数。

def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')  # 均方误差损失函数,reduction='none' 表示不对损失进行求和或平均,保留每个样本的损失。
    input_shape = train_features.shape[-1]  # 获取特征矩阵的列数,即特征的维度
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))  # 线性回归模型,输入维度为input_shape,输出维度为1,不设置偏置
    batch_size = min(10, train_labels.shape[0])  # 训练集的批量大小,10个为1个batch_size,保证最后一个批量小于10也可以训练
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),  # 训练集的迭代器,batch_size为10,labels要做成列向量
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),  # 测试集的迭代器,batch_size为10,labels要做成列向量
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = util.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):  # 训练模型,400轮
        util.train_epoch_ch3(net, train_iter, loss, trainer)  # 训练一个epoch,计算平均损失(进行一次完整的前向传播和反向传递)
        if epoch == 0 or (epoch + 1) % 20 == 0:  # 每20轮打印一次损失
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))  # 添加训练损失和测试损失
    print('weight:', net[0].weight.data.numpy())

三阶多项式函数拟合(正常)

我们将首先使用三阶多项式函数,它与数据生成函数的阶数相同。
结果表明,该模型能有效降低训练损失和测试损失。 学习到的模型参数也接近真实值 w = [ 5 , 1.2 , − 3.4 , 5.6 ] w=[5,1.2,-3.4,5.6] w=[5,1.2,3.4,5.6]
在这里插入图片描述

线性函数拟合(欠拟合)

让我们再看看线性函数拟合,减少该模型的训练损失相对困难。 在最后一个迭代周期完成后,训练损失仍然很高。 当用来拟合非线性模式(如这里的三阶多项式函数)时,线性模型容易欠拟合。
在这里插入图片描述

高阶多项式函数拟合(过拟合)

现在,让我们尝试使用一个阶数过高的多项式来训练模型。 在这种情况下,没有足够的数据用于学到高阶系数应该具有接近于零的值。 因此,这个过于复杂的模型会轻易受到训练数据中噪声的影响。 虽然训练损失可以有效地降低,但测试损失仍然很高。 结果表明,复杂模型对数据造成了过拟合。
在这里插入图片描述

小结

  • 欠拟合是指模型无法继续减少训练误差。过拟合是指训练误差远小于验证误差。
  • 由于不能基于训练误差来估计泛化误差,因此简单地最小化训练误差并不一定意味着泛化误差的减小。机器学习模型需要注意防止过拟合,即防止泛化误差过大。
  • 验证集可以用于模型选择,但不能过于随意地使用它。
  • 我们应该选择一个复杂度适当的模型,避免使用数量不足的训练样本。
  • 19
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值