实操针对房屋数据集“house_prices.csv”的多元线性回归

1、、数据清洗

1.1、数据缺失,即存在某些数据等于0

在这里插入图片描述
    解决办法:选中缺失数据的列,然后采用选择菜单:点击数据——筛选,选中数据是0的,点击确定在这里插入图片描述
然后点击删除行即可以删除数据
在这里插入图片描述
同样的操作删除后一列bathroom的缺失值。

1.2、存在重复数据

    解决办法:excel打开数据集,选中需要处理的数据,然后选择数据——数据工具——删除重复值,在弹出的窗口里利用唯一标识house_id,删除重复值在这里插入图片描述

1.3、存在非数值性属性

    原始数据中的neighborhood和style为非数值型数据,需要转换成数值型数据才能够进行回归分析。
    解决办法:选中开始——查找和替换——替换
在这里插入图片描述
全部替换完成所有A的转换,同理进行B和C以及style的替换
    完成清理之后的数据在这里插入图片描述
对数据进行保存

2、多元线性回归代码实现

2.1、基础包、数据导入

    

import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import datasets
from sklearn.linear_model import LinearRegression
df = pd.read_csv('house_prices.csv')
df.info()#显示列名和数据类型类型
df.head(6)#显示前n行,n默认为5

导入包并读取导入包读取文件house_prices.csv’数据
在这里插入图片描述

2.2、数据处理、探索

    进行数据处理

# 异常值处理
# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定行,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower

    调用函数

outlier, upper, lower = outlier_test(data=df, column='price', method='z')
outlier.info(); outlier.sample(5)

    删除错误数据

# 这里简单的丢弃即可
df.drop(index=outlier.index, inplace=True)

    定义变量进行数据分析

# 类别变量,又称为名义变量,nominal variables
nominal_vars = ['neighborhood', 'style']

for each in nominal_vars:
    print(each, ':')
    print(df[each].agg(['value_counts']).T)
    # 直接 .value_counts().T 无法实现下面的效果
     ## 必须得 agg,而且里面的中括号 [] 也不能少
    print('='*35)
    # 发现各类别的数量也都还可以,为下面的方差分析做准备

在这里插入图片描述
    调用热力图查看各变量之间的关联性

# 热力图 
def heatmap(data, method='pearson', camp='RdYlGn', figsize=(10 ,8)):
    """
    data: 整份数据
    method:默认为 pearson 系数
    camp:默认为:RdYlGn-红黄蓝;YlGnBu-黄绿蓝;Blues/Greens 也是不错的选择
    figsize: 默认为 10,8
    """
    ## 消除斜对角颜色重复的色块
    #     mask = np.zeros_like(df2.corr())
    #     mask[np.tril_indices_from(mask)] = True
    plt.figure(figsize=figsize, dpi= 80)
    sns.heatmap(data.corr(method=method), \
                xticklabels=data.corr(method=method).columns, \
                yticklabels=data.corr(method=method).columns, cmap=camp, \
                center=0, annot=True)
    # 要想实现只是留下对角线一半的效果,括号内的参数可以加上 mask=mask

    然后调用函数输出结果

heatmap(data=df, figsize=(6,5))

    查看其热力图, 通过热力图可以看出 area,bedrooms,bathrooms 等变量与房屋价格 price 的关系都还比较强
所以值得放入模型,但分类变量 style 与 neighborhood 两者与 price 的关系未知
在这里插入图片描述

2.3、模型拟合

    利用回归模型中的方差分析,从线性回归结果中提取方差分析结果
代码:

    
import statsmodels.api as sm
from statsmodels.formula.api import ols # ols 为建立线性回归模型的统计学库
from statsmodels.stats.anova import anova_lm

    随机抽取600条数据样本

df = df.copy().sample(600)

# C 表示告诉 Python 这是分类变量,否则 Python 会当成连续变量使用
## 这里直接使用方差分析对所有分类变量进行检验
## 下面几行代码便是使用统计学库进行方差分析的标准姿势
lm = ols('price ~ C(neighborhood) + C(style)', data=df).fit()
anova_lm(lm)

# Residual 行表示模型不能解释的组内的,其他的是能解释的组间的
# df: 自由度(n-1)- 分类变量中的类别个数减1
# sum_sq: 总平方和(SSM),residual行的 sum_eq: SSE
# mean_sq: msm, residual行的 mean_sq: mse
# F:F 统计量,查看卡方分布表即可
# PR(>F): P 值

# 反复刷新几次,发现都很显著,所以这两个变量也挺值得放入模型中

得到
在这里插入图片描述

    建立多元线性回归模型

from statsmodels.formula.api import ols

lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit()
lm.summary()

在这里插入图片描述

二、Excel实现多元线性回归,求解回归方程

在这里插入图片描述

    1、在上图的回归统计子表中,字段Multiple R代表复相关系数R,也就是R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。本次数据集回归分析得到的R=0.818661,这表明x和y之间的关系为高度正相关。R Square是复测定系数,也就是相关系数R的平方。Adjusted R Square是调整后的复测定系数R2,该值为0.670205,说明自变量能说明因变量y的67.02%,因变量y的32.98%要由其他因素来解释。标准误差用来衡量拟合程度的大小,也用于计算与回归相关的其它统计量,此值为306690.576138747,此值越小,而306690.576138747偏大,说明拟合程度不太理想。观察值是用于估计回归方程的数据的观察值个数,本次数据集抽取了前100条数据,所以观察值为100。

    2、设因变量房屋售价为y,自变量房屋编号为x1,自变量街区为x2,自变量卧室面积为x3,自变量总面积为x4,自变量浴室面积为x5,自变量房屋风格为x6,在上图的表中,Coefficients为常数项和X Variable的值,据此便可以估算得出回归方程为:y= 37.1024* x1+ 239.1956* x2+391.3354* x3-19165.5x4+66373.13x5-2231.02*x6-331017。但根据Coefficients估算出的回归方程可能存在较大的误差,在第三张子表中更为重要的一列是P-value列,P-value为回归系数t统计量的P值。由表中P-value的值可以发现,自变量房屋总面积的P值小于显著性水平0.05,因此这个自变量与y相关。浴室面积和卧室面积的P值大于显著性水平0.05,说这两个自变量与y相关性较弱,甚至不存在线性相关关系。

三、Sklearn库实现多元线性回归,对结果进行对比分析

3.1、初次线性回归

    导入相关包和没有处理过的数据数据

import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import datasets
from sklearn.linear_model import LinearRegression
df = pd.read_csv('house_prices.csv')
df.info()#显示列名和数据类型类型
df.head(7)#显示前7行,默认5行

在这里插入图片描述

    实现多元线性回归

# 读取数据
data_x=df[['area','bedrooms','bathrooms']]
data_y=df['price']
# 进行多元线性回归
model=LinearRegression()
l_model=model.fit(data_x,data_y)
print('回归系数')
print(model.coef_)
print('截距')
print(model.intercept_)
print('回归方程: Y=(',model.coef_[0],')*x1 +(',model.coef_[1],')*x2 +(',model.coef_[2],')*x3 +(',model.intercept_,')')

在这里插入图片描述

3.2、数据处理并再次模拟

    进行异常数据处理

# 异常值处理
# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定行,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower
outlier, upper, lower = outlier_test(data=df, column='price', method='z')
outlier.info(); outlier.sample(5)
# 这里简单的丢弃即可
df.drop(index=outlier.index, inplace=True)

在这里插入图片描述

    再次进行回归模型模拟

# 读取数据
data_x=df[['area','bedrooms','bathrooms']]
data_y=df['price']
# 进行多元线性回归
model=LinearRegression()
l_model=model.fit(data_x,data_y)
print('回归系数')
print(model.coef_)
print('截距')
print(model.intercept_)
print('回归方程: Y=(',model.coef_[0],')*x1 +(',model.coef_[1],')*x2 +(',model.coef_[2],')*x3 +(',model.intercept_,')')

在这里插入图片描述

    
    

参考:回归模型

  • 2
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值