Excel实现简单多元线性回归

文章目录


1.打开对应数据的Excel文档
2.选择数据栏的数据分析
在这里插入图片描述
3.在数据分析中找到回归
在这里插入图片描述
4.选择对应的X和Y值。这里X的值是area、bedroom和bathroom。Y值为price。
在这里插入图片描述
5.最终结果price=10072.1+345.911 area-2925.8bedroom+7345.39*bathroom
在这里插入图片描述

### 如何在 Excel 中执行线性回归分析 #### 启用分析工具包加载项 为了在 Excel 中执行回归分析,需要先启用分析工具包加载项。这一加载项为统计和工程分析提供了必要的数据分析工具[^1]。 #### 执行线性回归分析的具体操作 一旦启用了分析工具包,在数据选项卡中会发现一个新的组叫做“分析”,其中有一个按钮名为“数据分析”。点击此按钮将会打开一个对话框,从中可以选择不同的分析工具,包括回归分析。 选择“回归”并点击确定之后,会出现另一个窗口让用户指定输入范围以及输出偏好。对于Y值输入范围应指明因变量的数据区域;X值输入范围则对应于自变量所在的位置。如果数据集的第一行包含了标签,则可以勾选相应的复选框以便让软件识别这些列头作为名称处理而不是数值型数据的一部分。此外还可以设置置信度水平,默认情况下设为95%,也可以根据需求调整其他参数配置比如残差图等辅助图表生成与否的选择。 完成上述设定后点击确定键即可开始运行线性回归过程,并得到一系列的结果表格与图形展示,其中包括但不限于回归方程系数估计值及其标准误差、t检验统计量P-value用来判断各个因素是否显著影响目标变量的变化趋势等等重要信息[^2]。 ```python import pandas as pd from sklearn.linear_model import LinearRegression # 假定已经准备好了一个DataFrame df, 其中含有'X' 和 'Y' df = pd.DataFrame({'X': [1, 2, 3], 'Y': [2, 4, 6]}) model = LinearRegression().fit(df[['X']], df['Y']) print(f"Coefficients: {model.coef_}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值