单纯形法(一)
——————————————————————————
——————————————————————————
!!2021-10-18更新
这篇文写了挺久了,也有蛮多人在看,也有不少错误被提出来。
看着自己以前写的代码也很烂(也很累),所以稍作修改。
——————————————————————————
——————————————————————————
1、为什么叫单纯形法
- 单纯形是N 维空间中的N+1 个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体等等,都是单纯形。
- 可以证明线性规划问题如果存在可行域,那么可行域必然是个凸集,其最优解必然在顶点取到——单纯形。
- 单纯形法的基本原理就是从可行域的一个顶点出发,不断转轴到下一个顶点从而最终找到最优解。
2、单纯形法怎么用
单纯形法的一般解题步骤可归纳如下:
- 1、把线性规划问题的约束方程组表达成典范型(标准型)方程组,找出基本可行解作为初始基本可行解。
- 2、若基本可行解不存在,即约束条件有矛盾,则问题无解。
- 3、若基本可行解存在,从初始基可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
- 4、按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
- 5、若迭代过程中发现问题的目标函数值无界,则终止迭代。
3、我们先讨论最简单的情况:初始基本可行解已知
e.g.
m a x z = − 2 x 1 + x 2 s . t . { 3 x 1 + 2 x 2 + x 3 = 18 − x 1 + 4 x 2 + x 4 = 8 x i ≥ 0 , i = 1 , 2 , 3 , 4 max \ \ z=-2x_1+x_2 \\ s.t. \begin{cases} 3x_1+2x_2+x_3=18 \\ -x_1+4x_2+x_4=8 \\ x_i \geq0 \ ,i=1,2,3,4\end{cases} max z=−2x1+x2s.t.⎩⎪⎨⎪⎧3x1+2x2+x3=18−x1+4x2+x4=8xi≥0 ,i=1,2,3,4
可以很容易看出来 X = ( 0 , 0 , 18 , 8 ) T X=(0,0,18,8)^T X=(0,0,18,8)T是一个可行解;基变量选取为 x 3 , x 4 x_3,x_4 x3,x4,可以开始单纯形表的迭代。
4、py代码部分(简单使用了numpy库与fractions库)
使用到的包
别名
a、获取所有的系数
def getinput():
global m,n #这两个变量其他函数里也需要调用
string = input('''
输入初始单纯形表形如
例一:3 2 1 0 18;-1 4 0 1 8;-2 1 0 0 0
例二:2 1 0 1 0 0 8;-4 -2 3 0 1 0 14;1 -2 1 0 0 1 18;6 -3 1 0 0 0 0
例三:8 2 4 1 0 0 1;2 6 6 0 1 0 1;6 4 4 0 0 1 1;1 1 1 0 0 0 0
前m行表示m个约束的增广矩阵,最后一行表示检验数
输入:''')
a = [list(map(eval,row.split())) for row in string.split(';')]
matrix = np.array(a)
m,n = matrix.shape
n -= 1
m -= 1
print('\n\n输入的目标函数为')
x = [f'{
matrix[-1,j]}*x_{
j+1}' for j in range(n)]
print('max z = '+' + '.join(x))
print('\n\n输入的方程为')
for i in range(m):
x = [f'{
matrix[i,j]}*x_{
j+1}' for j in range(n)]
print(' + '.join(x),f'={
matrix[i,-1]}'