线性差分方程及其通解的一般求法

本文介绍了线性差分方程的通解,从特征方程以及延迟算子两个方面介绍了相关概念。并且以AR(2)模型为例,详细介绍了2元线性差分方程的通解情况,另外有若干例题。最后还给出了此类问题矩阵形式,但才疏学浅未能求解。如果有大神路过,知道如何求解还请指点一二。

一、定义

1、线性齐次递推关系

一个常系数的k阶线性齐次递推关系是形如:
a n = c 1 a n − 1 + c 2 a n − 2 + ⋯ + c k a n − k    ( n > k ) a_n = c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k} \ \ (n>k) an=c1an1+c2an2++ckank  (n>k)
的递推关系,其中 c i , i = 1 , 2 , ⋯   , k c_i, i=1,2,\cdots,k ci,i=1,2,,k为常数, c k ≠ 0 c_k\ne0 ck=0 { a n } n = 1 ∞ \{a_n\}_{n=1}^{\infty} {an}n=1是一个序列。

2、延迟算子

延迟算子 B B B,作用于一个序列 a n a_n an,效果为序列的序数减一:
B a n = a n − 1 Ba_n=a_{n-1} Ban=an1 延迟算子可以和实数复合,成为新的算子,例如差分算子

∇ = 1 − B \nabla=1-B =1B

效果为: ∇ a n = a n − a n − 1 \nabla a_n=a_n-a_{n-1} an=anan1
延迟算子还有以下一些性质:
交换律

C 1 ( B ) [ C 2 ( B ) a n ] = C 2 ( B ) [ C 1 ( B ) a n ] C_1(B)[C_2(B)a_n]=C_2(B)[C_1(B)a_n] C1(B)[C2(B)an]=C2(B)[C1(B)an]

结合律
C 1 ( B ) [ C 2 ( B ) a n ] = [ C 1 ( B ) C 2 ( B ) ] a n C_1(B)[C_2(B)a_n] = [C_1(B)C_2(B)]a_n C1(B)[C2(B)an]=[C1(B)C2(B)]an

分配律
[ C 1 ( B ) + C 2 ( B ) ] a n = C 1 ( B ) a n + C 2 ( B ) a n [C_1(B)+C_2(B)]a_n = C_1(B)a_n+C_2(B)a_n [C1(B)+C2(B)]an=C1(B)an+C2(B)an
也就是说,延迟算子的多项式 C ( B ) C(B) C(B)也是有意义的。(这里说不清楚,总之把算子理解为一个代数式就可以了

3、线性齐次差分方程

如果定义了延迟算子 B B B,那么上述的线性递推关系也可以写成一个k阶线性齐次差分方程 ( 1 − c 1 B − c 2 B 2 − ⋯ − c k B k ) a n = 0 \left(1-c_1B-c_2B^2-\cdots-c_kB^k\right)a_n=0 (1c1Bc2B2ckBk)an=0 其中 B B B为延迟算子, c i , i = 1 , 2 , ⋯   , k c_i, i=1,2,\cdots,k ci,i=1,2,,k是实数, c k ≠ 0 c_k\ne0 ck=0 { a n } n = 1 ∞ \{a_n\}_{n=1}^{\infty} {an}n=1是一个序列。

4、特征方程与特征根

如果 a n = r n ( r ≠ 0 ) a_n = r^n(r\ne0) an=rn(r=0)是(1)式的一个解,那么就有:
r n = c 1 r n − 1 + c 2 r n − 2 + ⋯ + c k r n − k r^n = c_1r^{n-1}+c_2r^{n-2}+\cdots+c_kr^{n-k} rn=c1rn1+c2rn2++ckrnk 等价变换为特征方程
r k − c 1 r k − 1 − c 2 r k − 2 − ⋯ − c k − 1 r − c k = 0 r^k-c_1r^{k-1}-c_2r^{k-2}-\cdots-c_{k-1}r-c_k=0 rkc1rk1c2rk2ck1rck=0
因此, a n = r n ( r ≠ 0 ) a_n = r^n(r\ne0) an=rn(r=0)是(1)式的一个解,当且仅当 r r r是上述特征方程的一根,特征方程的根称为特征根

而在延迟算子的定义中,这样的特征方程更为明显。根据特征算子的性质,若 1 r \frac{1}{r} r1 C ( B ) = 0 C(B)=0 C(B)=0的一个根,则有 C ( B ) a n = ( 1 − r B ) C ′ ( B ) a n = 0 C(B)a_n = (1-rB)C'(B)a_n=0 C(B)an=(1rB)C(B)an=0也就是说, ( 1 − r B ) a n = 0 (1-rB)a_n=0 (1rB)an=0的根 a n = r n ( r ≠ 0 ) a_n = r^n(r\ne0) an=rn(r=0) C ( B ) a n = 0 C(B)a_n=0 C(B)an=0的一个特解。而根据代数基本定理,算子多项式可以做以下因式分解: C ( B ) a n = ( 1 − c 1 B − c 2 B 2 − ⋯ − c k B k ) a n = ( 1 − r 1 B ) ( 1 − r 2 B ) ⋯ ( 1 − r k B ) a n = 0 \begin{aligned} C(B)a_n =& \left(1-c_1B-c_2B^2-\cdots-c_kB^k\right)a_n\\ & =(1-r_1B)(1-r_2B)\cdots(1-r_kB)a_n\\ &=0 \end{aligned} C(B)an=(1c1Bc2B2ckBk)an=(1r1B)(1r2B)(1rkB)an=0
其实这里的 r i r_i ri就和特征方程中的根等价了,也和 C ( B ) = 0 C(B)=0 C(B)=0的根一一对应成倒数关系。

二、定理

定理1

如果特征方程有k个不相等的根(复数域上 r i , i = 1 , 2 , ⋯   , k r_i,i=1,2,\cdots,k ri,i=1,2,,k。那么递推关系的通解为:
a n = α 1 r 1 n + α 2 r 2 n + ⋯ + α k r k n a_n = \alpha_1r_1^n+\alpha_2r_2^n+\cdots+\alpha_kr_k^n an=α1r1n+α2r2n++αkrkn
其中 α i , i = 1 , 2 , ⋯   , k \alpha_i,i=1,2,\cdots,k αi,i=1,2,,k为复数域上的常数。定理1的证明通过以上延迟算子分解的过程很容易得出。

定理2

如果特征方程有t个不相等的根(复数域上 r i , i = 1 , 2 , ⋯   , t r_i,i=1,2,\cdots,t ri,i=1,2,,t,其代数重数分别为 m 1 , m 2 , ⋯   , m t m_1,m_2,\cdots,m_t m1,m2,,mt,满足 m i ≥ 1 , i = 1 , 2 , ⋯   , t m_i\geq1,i=1,2,\cdots,t mi1,i=1,2,,t,且 ∑ i = 1 t m i = k \sum_{i=1}^tm_i=k i=1tmi=k。那么递推关系的通解为:

a n = ( a 1 , 0 + a 1 , 1 n + ⋯ + a 1 , m 1 − 1 n m 1 − 1 ) r 1 n + ( a 2 , 0 + a 2 , 1 n + ⋯ + a 2 , m 2 − 1 n m 2 − 1 ) r 2 n + ⋯ + ( a t , 0 + a t , 1 n + ⋯ + a t , m t − 1 n m t − 1 ) r t n \begin{aligned} a_n=&\left(a_{1,0}+a_{1,1}n+\cdots+a_{1,m_1-1}n^{m_1-1}\right)r_1^n\\ &+\left(a_{2,0}+a_{2,1}n+\cdots+a_{2,m_2-1}n^{m_2-1}\right)r_2^n\\ &+\cdots+\left(a_{t,0}+a_{t,1}n+\cdots+a_{t,m_t-1}n^{m_t-1}\right)r_t^n\end{aligned} an=(a1,0+a1,1n++a1,m11nm11)r1n+(a2,0+a2,1n++a2,m21nm21)r2n++(at,0+at,1n++at,mt1nmt1)rtn
其中 a i , j a_{i,j} ai,j是复数域上的常数, 1 ≤ i ≤ t 1\leq i\leq t 1it 0 ≤ j ≤ m i − 1 0\leq j\leq m_i-1 0jmi1

三、二元线性递推关系

以AR(2)时间序列模型的自相关函数为例

这里的AR(2)模型即是时间序列分析中的2阶自回归模型,博主的线性差分方程知识也都是在这门课上学的。这些d

AR(2)模型: Y t = ϕ 1 Y t − 1 + ϕ 2 Y t − 2 + e t Y_t=\phi_1Y_{t-1}+\phi_2Y_{t-2}+e_t Yt=ϕ1Yt1+ϕ2Yt2+et自相关函数 ρ k \rho_k ρk满足如下的线性递推关系
ρ 0 = 1 ρ 1 = ϕ 1 1 − ϕ 2 ρ k = ϕ 1 ρ k − 1 + ϕ 2 ρ k − 2 ,   k ≥ 2 \begin{aligned} \rho_0& = 1\\ \rho_1& = \frac{\phi_1}{1-\phi_2}\\ \rho_k& = \phi_1\rho_{k-1}+\phi_2\rho_{k-2}, \ k\geq2\end{aligned} ρ0ρ1ρk=1=1ϕ2ϕ1=ϕ1ρk1+ϕ2ρk2, k2
其特征方程为: λ 2 − ϕ 1 λ − ϕ 2 λ = 0 \lambda^2-\phi_1\lambda-\phi_2\lambda=0 λ2ϕ1λϕ2λ=0 两根为
λ 1 , 2 = ϕ 1 ± ϕ 1 2 + 4 ϕ 2 2 \lambda_{1,2}=\frac{\phi_1\pm\sqrt{\phi_1^2+4\phi_2}}{2} λ1,2=2ϕ1±ϕ12+4ϕ2

1、两个特征根相等

也即 ϕ 1 2 + 4 ϕ 2 = 0 \phi_1^2+4\phi_2=0 ϕ12+4ϕ2=0,则有 λ 1 = λ 2 = ϕ 1 2 \lambda_1 = \lambda_2=\frac{\phi_1}{2} λ1=λ2=2ϕ1
这种情况下根据定理有: ρ k = ( a 1 + a 2 k ) ( ϕ 1 2 ) k \rho_k=(a_1+a_2k)(\frac{\phi_1}{2})^k ρk=(a1+a2k)(2ϕ1)k
带入初始条件 { ρ 0 = 1 ρ 1 = ϕ 1 1 − ϕ 2 \begin{cases} \rho_0=1\\ \rho_1=\frac{\phi_1}{1-\phi_2} \end{cases} {ρ0=1ρ1=1ϕ2ϕ1 解出: { a 1 = 1 a 2 = 1 + ϕ 2 1 − ϕ 2 \begin{cases} a_1 = 1\\ a_2 = \frac{1+\phi_2}{1-\phi_2} \end{cases} {a1=1a2=1ϕ21+ϕ2 于是此时的自相关函数为:
ρ k = ( 1 + 1 + ϕ 2 1 − ϕ 2 k ) ( ϕ 1 2 ) k \rho_k=(1+\frac{1+\phi_2}{1-\phi_2}k)(\frac{\phi_1}{2})^k ρk=(1+1ϕ21+ϕ2k)(2ϕ1)k

2、两个特征根不相等,且都为实数根

也即 ϕ 1 2 + 4 ϕ 2 > 0 \phi_1^2+4\phi_2>0 ϕ12+4ϕ2>0,则由定理可知: ρ k = a 1 λ 1 k + a 2 λ 2 k \rho_k=a_1\lambda_1^k+a_2\lambda_2^k ρk=a1λ1k+a2λ2k 带入初始条件
{ ρ 0 = 1 ρ 1 = ϕ 1 1 − ϕ 2 \begin{cases} \rho_0=1\\ \rho_1=\frac{\phi_1}{1-\phi_2} \end{cases} {ρ0=1ρ1=1ϕ2ϕ1 解出: { a 1 = ϕ 1 1 − ϕ 2 − λ 2 λ 1 − λ 2 a 2 = λ 1 − ϕ 1 1 − ϕ 2 λ 1 − λ 2 \begin{cases} a_1 = \frac{\frac{\phi_1}{1-\phi_2}-\lambda_2}{\lambda_1-\lambda_2}\\ a_2 = \frac{\lambda_1-\frac{\phi_1}{1-\phi_2}}{\lambda_1-\lambda_2} \end{cases} a1=λ1λ21ϕ2ϕ1λ2a2=λ1λ2λ11ϕ2ϕ1 其中有 { λ 1 + λ 2 = ϕ 1 λ 1 λ 2 = − ϕ 2 ⇒ ϕ 1 1 − ϕ 2 = λ 1 + λ 2 1 + λ 1 λ 2 \begin{cases} \lambda_1+\lambda_2=\phi_1\\ \lambda_1\lambda_2=-\phi_2 \end{cases} \Rightarrow \frac{\phi_1}{1-\phi_2}=\frac{\lambda_1+\lambda_2}{1+\lambda_1\lambda_2} {λ1+λ2=ϕ1λ1λ2=ϕ21ϕ2ϕ1=1+λ1λ2λ1+λ2
于是此时的自相关函数为: ρ k = ϕ 1 1 − ϕ 2 − λ 2 λ 1 − λ 2 λ 1 k + λ 1 − ϕ 1 1 − ϕ 2 λ 1 − λ 2 λ 2 k = λ 1 + λ 2 1 + λ 1 λ 2 − λ 2 λ 1 − λ 2 λ 1 k + λ 1 − λ 1 + λ 2 1 + λ 1 λ 2 λ 1 − λ 2 λ 2 k = ( 1 − λ 2 2 ) λ 1 k + 1 − ( 1 − λ 1 2 ) λ 2 k + 1 ( λ 1 − λ 2 ) ( 1 + λ 1 λ 2 ) \begin{aligned} \rho_k&=\frac{\frac{\phi_1}{1-\phi_2}-\lambda_2}{\lambda_1-\lambda_2}\lambda_1^k+\frac{\lambda_1-\frac{\phi_1}{1-\phi_2}}{\lambda_1-\lambda_2}\lambda_2^k\\ &=\frac{\frac{\lambda_1+\lambda_2}{1+\lambda_1\lambda_2}-\lambda_2}{\lambda_1-\lambda_2}\lambda_1^k+\frac{\lambda_1-\frac{\lambda_1+\lambda_2}{1+\lambda_1\lambda_2}}{\lambda_1-\lambda_2}\lambda_2^k\\ &=\frac{(1-\lambda_2^2)\lambda_1^{k+1}-(1-\lambda_1^2)\lambda_2^{k+1}}{(\lambda_1-\lambda_2)(1+\lambda_1\lambda_2)}\end{aligned} ρk=λ1λ21ϕ2ϕ1λ2λ1k+λ1λ2λ11ϕ2ϕ1λ2k=λ1λ21+λ1λ2λ1+λ2λ2λ1k+λ1λ2λ11+λ1λ2λ1+λ2λ2k=(λ1λ2)(1+λ1λ2)(1λ22)λ1k+1(1λ12)λ2k+1

3、两个特征根不相等,且都为复数根

也即 ϕ 1 2 + 4 ϕ 2 < 0 \phi_1^2+4\phi_2<0 ϕ12+4ϕ2<0,则有:
λ 1 , 2 = ϕ 1 ± − ϕ 1 2 − 4 ϕ 2 i 2 = − ϕ 2 ( ϕ 1 2 − ϕ 2 ± − ϕ 1 2 − 4 ϕ 2 2 − ϕ 2 i ) = R ( cos ⁡ θ + i sin ⁡ ( ± θ ) ) = R e ± i θ \begin{aligned} \lambda_{1,2}&=\frac{\phi_1\pm\sqrt{-\phi_1^2-4\phi_2}i}{2}\\ &=\sqrt{-\phi_2}\left(\frac{\phi_1}{2\sqrt{-\phi_2}}\pm \frac{\sqrt{-\phi_1^2-4\phi_2}}{2\sqrt{-\phi_2}}i\right)\\ &=R(\cos\theta+i\sin(\pm\theta))\\ &=Re^{\pm i\theta}\end{aligned} λ1,2=2ϕ1±ϕ124ϕ2 i=ϕ2 (2ϕ2 ϕ1±2ϕ2 ϕ124ϕ2 i)=R(cosθ+isin(±θ))=Re±iθ
其中 R = − ϕ 2 , cos ⁡ θ = ϕ 1 2 − ϕ 2 R=\sqrt{-\phi_2},\cos\theta=\frac{\phi_1}{2\sqrt{-\phi_2}} R=ϕ2 ,cosθ=2ϕ2 ϕ1
这种情况下根据定理有: ρ k = a 1 λ 1 k + a 2 λ 2 k \rho_k=a_1\lambda_1^k+a_2\lambda_2^k ρk=a1λ1k+a2λ2k
并且由于自相关函数全部为实数,且 λ 1 = λ 2 ˉ \lambda_1=\bar{\lambda_2} λ1=λ2ˉ为共轭复数。所以 a 1 = a 2 ˉ a_1=\bar{a_2} a1=a2ˉ也必须为共轭复数,只有这样 ρ = a 1 λ 1 k + a 1 ˉ λ 1 ˉ k = a 1 ˉ λ 1 ˉ k + a 1 λ 1 k = ρ ˉ \rho=a_1\lambda_1^k+\bar{a_1}\bar{\lambda_1}^k=\bar{a_1}\bar{\lambda_1}^k+a_1\lambda_1^k=\bar{\rho} ρ=a1λ1k+a1ˉλ1ˉk=a1ˉλ1ˉk+a1λ1k=ρˉ才能为实数。
不妨设 { a 1 = a − b i a 2 = a + b i \begin{cases} a_1 = a-bi\\ a_2 = a+bi \end{cases} {a1=abia2=a+bi

则: ρ k = a 1 λ 1 k + a 2 λ 2 k = ( a − b i ) R k ( cos ⁡ k θ + i sin ⁡ k θ ) + ( a + b i ) R k ( cos ⁡ k θ − i sin ⁡ k θ ) = 2 R k ( a cos ⁡ k θ + b sin ⁡ k θ ) = 2 R k a 2 + b 2 sin ⁡ ( k θ + Φ ) \begin{aligned} \rho_k&=a_1\lambda_1^k+a_2\lambda_2^k\\ &=(a-bi)R^k(\cos k\theta+i\sin k\theta)+(a+bi)R^k(\cos k\theta-i\sin k\theta)\\ &=2R^k(a\cos k\theta+b\sin k\theta)\\ &=2R^k\sqrt{a^2+b^2}\sin(k\theta+\Phi)\end{aligned} ρk=a1λ1k+a2λ2k=(abi)Rk(coskθ+isinkθ)+(a+bi)Rk(coskθisinkθ)=2Rk(acoskθ+bsinkθ)=2Rka2+b2 sin(kθ+Φ)

带入初始条件:
{ ρ 0 = 1 ρ 1 = ϕ 1 1 − ϕ 2 \begin{cases} \rho_0=1\\ \rho_1=\frac{\phi_1}{1-\phi_2} \end{cases} {ρ0=1ρ1=1ϕ2ϕ1

解出: { a = 1 2 b = − ϕ 1 ( 1 + ϕ 2 ) 2 ( 1 − ϕ 2 ) − ϕ 1 2 − 4 ϕ 2 \begin{cases} a = \frac{1}{2}\\ b = -\frac{\phi_1(1+\phi_2)}{2(1-\phi_2)\sqrt{-\phi_1^2-4\phi_2}} \end{cases} {a=21b=2(1ϕ2)ϕ124ϕ2 ϕ1(1+ϕ2) 于是此时的自相关函数为:
ρ k = R k sin ⁡ ( k θ + Φ ) sin ⁡ Φ \rho_k=\frac{R^k\sin(k\theta+\Phi)}{\sin\Phi} ρk=sinΦRksin(kθ+Φ) 其中

R = − ϕ 2 cos ⁡ θ = ϕ 1 2 R tan ⁡ Φ = a b = 1 − ϕ 2 1 + ϕ 2 tan ⁡ θ \begin{aligned} &R=\sqrt{-\phi_2}\\ &\cos\theta=\frac{\phi_1}{2R}\\ &\tan\Phi=\frac{a}{b}=\frac{1-\phi_2}{1+\phi_2}\tan\theta\end{aligned} R=ϕ2 cosθ=2Rϕ1tanΦ=ba=1+ϕ21ϕ2tanθ

四、例题

1、无重根(斐波拉契数列)

斐波拉契数列: 0 , 1 , 1 , 2 , 3 , 5 , 8 , ⋯ 0, 1, 1, 2, 3, 5, 8, \cdots 0,1,1,2,3,5,8, f n + 2 = f n + f n + 1 , W h e n    f 0 = 0 , f 1 = 1 \begin{aligned} &f_{n+2}= f_n+f_{n+1},\\ &When \ \ f_0=0, f_1=1\end{aligned} fn+2=fn+fn+1,When  f0=0,f1=1 求通项:

特征方程为 x 2 − x − 1 = 0 x^2-x-1=0 x2x1=0,特征根为 1 ± 5 2 \frac{1\pm\sqrt{5}}{2} 21±5

于是 f n f_n fn的通解为:
f n = a ( 1 + 5 2 ) n + b ( 1 − 5 2 ) n f_n=a\left(\frac{1+\sqrt{5}}{2}\right)^n+b\left(\frac{1-\sqrt{5}}{2}\right)^n fn=a(21+5 )n+b(215 )n
其中 a , b a,b a,b 由方程组: { f 1 = a ( 1 + 5 2 ) + b ( 1 − 5 2 ) = 1 f 0 = a + b = 0 \begin{cases} f_1=a\left(\frac{1+\sqrt{5}}{2}\right)+b\left(\frac{1-\sqrt{5}}{2}\right)=1\\ f_0=a+b=0 \end{cases} {f1=a(21+5 )+b(215 )=1f0=a+b=0 解出,得到: { a = 1 5 b = − 1 5 \begin{cases} a = {1\over \sqrt5}\\ b = -{1\over \sqrt5} \end{cases} {a=5 1b=5 1

于是:
f n = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n f_n = \frac{1}{\sqrt5}\left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt5}\left(\frac{1-\sqrt{5}}{2}\right)^n fn=5 1(21+5 )n5 1(215 )n

2、有虚根

考虑另外一个数列: 0 , 1 , − 1 , − 2 , − 1 , 1 , 2 , 1 , − 1 , − 2 , ⋯ 0,1,-1,-2,-1,1,2,1,-1,-2,\cdots 0,1,1,2,1,1,2,1,1,2, a n + 2 = a n + 1 − a n W h e n    a 0 = 0 , a 1 = 1 \begin{aligned} &a_{n+2} = a_{n+1}-a_n\\ &When \ \ a_0=0,a_1=1\end{aligned} an+2=an+1anWhen  a0=0,a1=1 可以观察到这是一个周期数列
a n = { 0 if n=0 1 if n=1+6k ,   k ∈ N − 1 if n=2+6k ,   k ∈ N − 2 if n=3+6k ,   k ∈ N − 1 if n=4+6k ,   k ∈ N 1 if n=5+6k ,   k ∈ N 2 if n=6+6k ,   k ∈ N a_n=\begin{cases} 0&\text{if n=0}\\ 1&\text{if n=1+6k}, \ k\in N\\ -1&\text{if n=2+6k}, \ k\in N\\ -2&\text{if n=3+6k}, \ k\in N\\ -1&\text{if n=4+6k}, \ k\in N\\ 1&\text{if n=5+6k}, \ k\in N\\ 2&\text{if n=6+6k}, \ k\in N\\ \end{cases} an=0112112if n=0if n=1+6k, kNif n=2+6k, kNif n=3+6k, kNif n=4+6k, kNif n=5+6k, kNif n=6+6k, kN 用上述理论解之:
特征方程 x 2 − x + 1 = 0 x^2-x+1=0 x2x+1=0,特征根为 1 ± 3 i 2 \frac{1\pm\sqrt{3}i}{2} 21±3 i
写为三角形式为 cos ⁡ π 3 + i sin ⁡ π 3 \cos\frac{\pi}{3}+i\sin\frac{\pi}{3} cos3π+isin3π cos ⁡ 5 π 3 + i sin ⁡ 5 π 3 \cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3} cos35π+isin35π
a n a_n an 的通解为: a n = α ( cos ⁡ π 3 + i sin ⁡ π 3 ) n + β ( cos ⁡ 5 π 3 + i sin ⁡ 5 π 3 ) n = α ( cos ⁡ n π 3 + i sin ⁡ n π 3 ) + β ( cos ⁡ 5 n π 3 + i sin ⁡ 5 n π 3 ) = ( α + β ) cos ⁡ n π 3 + ( α − β ) i sin ⁡ n π 3 \begin{aligned} a_n &= \alpha\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^n+\beta\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right)^n\\ &=\alpha\left(\cos\frac{n\pi}{3}+i\sin\frac{n\pi}{3}\right)+\beta\left(\cos\frac{5n\pi}{3}+i\sin\frac{5n\pi}{3}\right)\\ &=(\alpha+\beta)\cos\frac{n\pi}{3}+(\alpha-\beta)i\sin\frac{n\pi}{3}\end{aligned} an=α(cos3π+isin3π)n+β(cos35π+isin35π)n=α(cos3nπ+isin3nπ)+β(cos35nπ+isin35nπ)=(α+β)cos3nπ+(αβ)isin3nπ
其中 α , β \alpha,\beta α,β由方程组: { a 1 = 1 a 2 = − 1 \begin{cases} &a_1=1\\ &a_2=-1 \end{cases} {a1=1a2=1 解出 α = β = 1 \alpha=\beta=1 α=β=1。 确定,于是:
a n = 2 cos ⁡ n π 3 , n ∈ N ∗ a_n = 2\cos\frac{n\pi}{3},n\in N^* an=2cos3nπ,nN

3、有重根

考虑数列: 0 , 1 , 4 , 12 , 32 , 80 ⋯ 0, 1, 4, 12, 32, 80\cdots 0,1,4,12,32,80 a n + 2 = 4 a n + 1 − 4 a n W h e n    a 0 = 0 , a 1 = 1 \begin{aligned} &a_{n+2} = 4a_{n+1}-4a_n\\ &When \ \ a_0=0,a_1=1\end{aligned} an+2=4an+14anWhen  a0=0,a1=1 求通项:
特征方程为: x 2 − 4 x + 4 = 0 x^2-4x+4=0 x24x+4=0,特征根为 x 1 = x 2 = 2 x_1=x_2=2 x1=x2=2为重根。 于是通解为:
a n = ( α + β n ) 2 n a_n = \left(\alpha+\beta n\right)2^n an=(α+βn)2n
验证得到 α = 0 , β = 1 2 \alpha=0,\beta={1\over2} α=0,β=21 a n = n × 2 n − 1 a_n=n\times2^{n-1} an=n×2n1

五、线性代数解法(猜想,具体能不能做出来我也不知道)

1、定义

这类问题也可以写成如下的矩阵形式: M A n − 1 = A n MA_{n-1}= A_n MAn1=An 其中有: M = [ c 1 c 2 ⋯ c k − 1 c k 1 0 ⋯ 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 0 ] M= \begin{bmatrix} c_1 & c_2 &\cdots&c_{k-1} &c_k\\ 1 & 0 &\cdots&0 &0\\ 0 & 1 &\cdots&0 &0\\ \vdots&\vdots& &\vdots&\vdots\\ 0&0&\cdots&1&0 \end{bmatrix} M=c1100c2010ck1001ck000 A n = [ a n a n − 1 ⋮ a n − k ] A_n= \begin{bmatrix} a_n\\ a_{n-1}\\ \vdots\\ a_{n-k} \end{bmatrix} An=anan1ank
这个矩阵是一个Frobenius矩阵
(图源网络,侵删)
在这里插入图片描述

那么问题就变成了求矩阵幂次。并且矩阵 M M M是由一个单位阵加了一行一列组成,或许它的幂次较为容易求得。并且我们实际上只需要 M n M^n Mn的第一行元素即可知道最终 a n a_n an的通项。
例如斐波拉契数列的例子中: [ 1 1 1 0 ] [ a n − 1 a n − 2 ] = [ a n a n − 1 ] \begin{bmatrix} 1&1\\ 1&0 \end{bmatrix} \begin{bmatrix} a_{n-1}\\ a_{n-2} \end{bmatrix} =\begin{bmatrix} a_{n}\\ a_{n-1} \end{bmatrix} [1110][an1an2]=[anan1]
做相似对角化: M = [ 1 1 1 0 ] = [ 1 − 5 2 1 + 5 2 1 1 ] [ 1 − 5 2 0 0 1 + 5 2 ] [ 1 − 5 2 1 + 5 2 1 1 ] − 1 M=\begin{bmatrix} 1&1\\ 1&0 \end{bmatrix} =\begin{bmatrix} \frac{1-\sqrt{5}}{2}&\frac{1+\sqrt{5}}{2}\\ 1&1 \end{bmatrix} \begin{bmatrix} \frac{1-\sqrt{5}}{2}&0\\ 0&\frac{1+\sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} \frac{1-\sqrt{5}}{2}&\frac{1+\sqrt{5}}{2}\\ 1&1 \end{bmatrix}^{-1} M=[1110]=[215 121+5 1][215 0021+5 ][215 121+5 1]1 有: A n = M n A 0 A_n=M^nA_0 An=MnA0 也就是: [ a n a n − 1 ] = M n [ a 0 a 1 ] = [ 1 − 5 2 1 + 5 2 1 1 ] [ 1 − 5 2 0 0 1 + 5 2 ] n [ 1 − 5 2 1 + 5 2 1 1 ] − 1 [ 0 1 ] = [ 1 − 5 2 1 + 5 2 1 1 ] [ ( 1 − 5 2 ) n 0 0 ( 1 + 5 2 ) n ] [ − 5 5 5 + 5 10 5 5 5 − 5 10 ] [ 0 1 ] = [ ( 1 − 5 2 ) n + 1 ( 1 + 5 2 ) n + 1 ( 1 − 5 2 ) n ( 1 + 5 2 ) n ] [ 5 + 5 10 5 − 5 10 ] \begin{aligned} \begin{bmatrix} a_{n}\\ a_{n-1} \end{bmatrix} =&M^n \begin{bmatrix} a_{0}\\ a_{1} \end{bmatrix}\\ =&\begin{bmatrix} \frac{1-\sqrt{5}}{2}&\frac{1+\sqrt{5}}{2}\\ 1&1 \end{bmatrix} \begin{bmatrix} \frac{1-\sqrt{5}}{2}&0\\ 0&\frac{1+\sqrt{5}}{2} \end{bmatrix}^n \begin{bmatrix} \frac{1-\sqrt{5}}{2}&\frac{1+\sqrt{5}}{2}\\ 1&1 \end{bmatrix}^{-1} \begin{bmatrix} 0\\ 1 \end{bmatrix}\\ =&\begin{bmatrix} \frac{1-\sqrt{5}}{2}&\frac{1+\sqrt{5}}{2}\\ 1&1 \end{bmatrix} \begin{bmatrix} \left(\frac{1-\sqrt{5}}{2}\right)^n&0\\ 0&\left(\frac{1+\sqrt{5}}{2}\right)^n \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{5}}{5}&\frac{5+\sqrt{5}}{10}\\ \frac{\sqrt{5}}{5}&\frac{5-\sqrt{5}}{10} \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix}\\ =&\begin{bmatrix} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}&\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}\\ \left(\frac{1-\sqrt{5}}{2}\right)^{n}&\left(\frac{1+\sqrt{5}}{2}\right)^n \end{bmatrix} \begin{bmatrix} \frac{5+\sqrt{5}}{10}\\ \frac{5-\sqrt{5}}{10} \end{bmatrix}\end{aligned} [anan1]====Mn[a0a1][215 121+5 1][215 0021+5 ]n[215 121+5 1]1[01][215 121+5 1](215 )n00(21+5 )n[55 55 105+5 1055 ][01](215 )n+1(215 )n(21+5 )n+1(21+5 )n[105+5 1055 ] 则: a n = 5 + 5 10 ( 1 − 5 2 ) n + 1 + 5 − 5 10 ( 1 + 5 2 ) n + 1 = − 5 5 ( 1 − 5 2 ) n + 5 5 ( 1 + 5 2 ) n = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n \begin{aligned} a_n =& \frac{5+\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}+\frac{5-\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}\\ =& \frac{-\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\\ =& \frac{1}{\sqrt5}\left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt5}\left(\frac{1-\sqrt{5}}{2}\right)^n\end{aligned} an===105+5 (215 )n+1+1055 (21+5 )n+155 (215 )n+55 (21+5 )n5 1(21+5 )n5 1(215 )n

2、特征值

此外,不难发现, M M M的特征值和前述特征方程的根一一对应。

想要求 M M M的特征值,先求 M M M的特征多项式: C ( r ) = d e t ( M − r E ) = 0 C(r)=det(M-rE)=0 C(r)=det(MrE)=0 也就是:
C ( r ) = d e t ( [ c 1 c 2 ⋯ c k − 1 c k 1 0 ⋯ 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 0 ] − [ r 0 ⋯ 0 0 0 r ⋯ 0 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 r ] ) = d e t ( [ c 1 − r c 2 ⋯ c k − 1 c k 1 − r ⋯ 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 − r ] ) = ( − 1 ) 2 ( c 1 − r ) f ( 1 ) + ( − 1 ) 3 c 2 f ( 2 ) + ⋯ + ( − 1 ) k + 1 c k f ( k ) = [ ∑ i = 1 k ( − 1 ) i + 1 c i f ( i ) ] − r f ( 1 ) = [ ∑ i = 1 k ( − 1 ) i + 1 c i ( − r ) k − i ] + ( − r ) k = [ ( − 1 ) k + 1 ∑ i = 1 k c i r k − i ] + ( − r ) k = ( − r ) k + ( − 1 ) k + 1 [ c 1 r k − 1 + c 2 r k − 2 + ⋯ + c k ] (*) \begin{aligned} C(r)&=det( \begin{bmatrix} c_1 & c_2 &\cdots&c_{k-1} &c_k\\ 1 & 0 &\cdots&0 &0\\ 0 & 1 &\cdots&0 &0\\ \vdots&\vdots& &\vdots&\vdots\\ 0&0&\cdots&1&0 \end{bmatrix}- \begin{bmatrix} r& 0 &\cdots&0 &0\\ 0 & r &\cdots&0 &0\\ 0 & 0 &\cdots&0 &0\\ \vdots&\vdots& &\vdots&\vdots\\ 0&0&\cdots&0&r \end{bmatrix})\\ &=det(\begin{bmatrix} c_1-r & c_2 &\cdots&c_{k-1} &c_k\\ 1 & -r &\cdots&0 &0\\ 0 & 1 &\cdots&0 &0\\ \vdots&\vdots& &\vdots&\vdots\\ 0&0&\cdots&1&-r \end{bmatrix})\tag{*}\\ &=(-1)^{2}(c_1-r)f(1)+(-1)^{3}c_2f(2)+\cdots+(-1)^{k+1}c_kf(k)\\ &=\left[\sum_{i=1}^{k}(-1)^{i+1}c_if(i)\right]-rf(1)\\ &=\left[\sum_{i=1}^{k}(-1)^{i+1}c_i(-r)^{k-i}\right]+(-r)^{k}\\ &=\left[(-1)^{k+1}\sum_{i=1}^{k}c_ir^{k-i}\right]+(-r)^{k}\\ &=(-r)^{k}+(-1)^{k+1}\left[c_1r^{k-1}+c_2r^{k-2}+\cdots+c_k\right]\\\end{aligned} C(r)=det(c1100c2010ck1001ck000r0000r000000000r)=det(c1r100c2r10ck1001ck00r)=(1)2(c1r)f(1)+(1)3c2f(2)++(1)k+1ckf(k)=[i=1k(1)i+1cif(i)]rf(1)=[i=1k(1)i+1ci(r)ki]+(r)k=[(1)k+1i=1kcirki]+(r)k=(r)k+(1)k+1[c1rk1+c2rk2++ck](*)
上式在(*)处按照第一行展开,其中 f ( i ) f(i) f(i)定义为下列矩阵去掉第 k k k列后的行列式:
[ 1 − r ⋯ 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 − r ] \begin{bmatrix} 1 & -r &\cdots&0 &0\\ 0 & 1 &\cdots&0 &0\\ \vdots&\vdots& &\vdots&\vdots\\ 0&0&\cdots&1&-r \end{bmatrix} 100r1000100r
在这里插入图片描述

则(**)式为0有方程:
( − r ) k + ( − 1 ) k + 1 [ c 1 r k − 1 + c 2 r k − 2 + ⋯ + c k ] = 0 (-r)^{k}+(-1)^{k+1}\left[c_1r^{k-1}+c_2r^{k-2}+\cdots+c_k\right]=0 (r)k+(1)k+1[c1rk1+c2rk2++ck]=0
也就是: r k − c 1 r k − 1 − c 2 r k − 2 − ⋯ − c k = 0 r^k - c_1r^{k-1}-c_2r^{k-2}-\cdots-c_k=0 rkc1rk1c2rk2ck=0
与前述特征方程相同。 则考虑以下两种情况:

3、求解

a、无重根

根据线性代数的理论,特征方程无重根,也就是矩阵 M K × k M_{K\times k} MK×k k k k个不同的特征值时, M M M可以相似对角化为 Q − 1 e i g ( M ) Q Q^{-1}eig(M)Q Q1eig(M)Q,其中 e i g ( M ) = d i a g ( r 1 , r 2 , ⋯   , r k ) eig(M)=diag(r_1,r_2,\cdots,r_k) eig(M)=diag(r1,r2,,rk)。进而有谱分解形式……

b、有重根

……

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值