替换空格
题目
请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
解题
第一种:可以定义一个StringBuffer 对象 ret,然后 遍历参数 str,一个个添加到 ret中,遇到空格添加 “%20”
第二种:先计算空格的数量,然后将参数 str 的长度设置为 str.length + space_count * 2;最后两个指针(一个是原字符串的长度 - 1,一个是新长度 - 1),最后从后向前遍历,不是空格就复制到后面,是空格就添加 “%20”
public String replaceSpace(StringBuffer str) {
int count = 0; // 空格次数
for (int i = 0; i < str.length(); i++) {
if(str.charAt(i) == ' ') {
count++;
}
}
int new_length = str.length() + count * 2;
int old_end = str.length()-1;
int new_end = new_length-1;
str.setLength(new_length); // 设置str的长度,String类没有此方法
while(old_end>=0 && new_end>=0) {
if(str.charAt(old_end) == ' ') {
str.setCharAt(new_end--,'0');
str.setCharAt(new_end--,'2');
str.setCharAt(new_end--,'%');
old_end--;
} else {
str.setCharAt(new_end,str.charAt(old_end));
new_end--;
old_end--;
}
}
return str.toString();
}
从尾到头打印链表
题目
输入一个链表,按链表从尾到头的顺序返回一个ArrayList。
example
解题
第一种:借助栈
第二种:直接用ArrayList存,然后 Collections.reverse(ArrayList)
第三中:递归
public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
ArrayList<Integer> list = new ArrayList<>();
printListFromTailToHeadHelper(listNode,list);
return list;
}
private void printListFromTailToHeadHelper(ListNode listNode, ArrayList<Integer> list) {
if(listNode == null) {
return;
}
printListFromTailToHeadHelper(listNode.next,list);
list.add(listNode.val);
}
斐波那契数列
题目
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1)。
example
解题
第一种:迭代遍历(最推荐)
第二种:递归(空间复杂度极高,一般OJ都会超时)
第三种:递归 + 剪枝(避免重复计算,将计算过的内容进行存储,需要用的时候直接取)
private HashMap<Integer,Integer> map = new HashMap<>(); // 用map来存
public int Fibonacci(int n) {
if(n == 0) return 0;
if(n == 1 || n == 2) return 1;
int prev = 0; // fib(n-1)
if(map.get(n-1) == null) {
// 如果n-1的对于的value没有值,就代表没存过,就要计算,然后存储
prev = Fibonacci(n-1);
map.put(n-1,prev);
} else {
// 找到就直接拿出来
prev = map.get(n-1);
}
int pprev = 0; // fib(n-2)
if(map.get(n-2) == null) {
pprev = Fibonacci(n-2);
map.put(n-2,pprev);
} else {
// 找到就直接拿出来
pprev = map.get(n-2);
}
return pprev + prev;
}
重建二叉树
题目
输入一棵二叉树的 前序遍历 + 中序遍历,来构建原二叉树
example
解题
分治的思想,利用前序遍历是从 root 开始的,来在 中序遍历中分出根节点的 左树和右数,然后递归构建 root.left + root.right
注意:递归的时候,前序遍历的区间
// 闭区间
public TreeNode reConstructBinaryTreeHelper(int[] pre, int pre_start, int pre_end,
int[] vin, int vin_start, int vin_end) {
// 递归出口
if(pre_start > pre_end || vin_start > vin_end) {
return null;
}
// 1. 先根据前序遍历拿到根节点
TreeNode root = new TreeNode(pre[pre_start]);
// 2. 在中序遍历中,查找root所在的下标
for (int i = vin_start; i <= vin_end; i++) {
if(vin[i] == pre[pre_start]) {
// [vin_start,i-1]这是左子树
// i 根节点
// [i+1,vin_end] 这是右子树
root.left = reConstructBinaryTreeHelper(pre, pre_start+1, pre_start+i-vin_start,
vin, vin_start, i-1);
// 前序的起始下标:左子树的结束下标+1
root.right = reConstructBinaryTreeHelper(pre, pre_start+i-vin_start + 1, pre_end,
vin, i+1, vin_end);
break;
}
}
return root;
}
public TreeNode reConstructBinaryTree(int [] pre,int [] vin) {
if(pre == null || vin == null) {
return null;
}
if(pre.length == 0 || vin.length == 0 || pre.length != vin.length) {
return null;
}
return reConstructBinaryTreeHelper(pre, 0, pre.length-1, vin, 0, vin.length-1);
}