X-AnyLabeling 生成的JSON格式标签转换为YOLO格式标签详细教程(含代码)

X-AnyLabeling 生成的JSON格式标签转换为YOLO格式标签详细教程(含代码)

以下是一个Python脚本,用于将JSON格式的标注数据转换为YOLO格式的TXT文件。

import os  
import json  
from PIL import Image  
import warnings  
  
warnings.filterwarnings("ignore")  
  
json_dir = 'path'  # JSON文件路径  
out_dir = 'path'  # 输出的TXT文件路径  
  
# 确保输出目录存在  
if not os.path.exists(out_dir):  
    os.makedirs(out_dir)  
  
def get_json(json_file, filename):  
    # 读取JSON文件数据  
    with open(json_file, 'r') as load_f:  
        content = json.load(load_f)  
  
    image_width = 720  # 图片的宽  
    image_height = 360  # 图片的高  
  
    filename_txt = out_dir + filename + '.txt'  
  
    # 创建或清空TXT文件  
    with open(filename_txt, mode="w", encoding="utf-8") as fp:  
        pass  # 创建一个空文件然后关闭  
  
    # 类别名称,对应标签序号  
    name = ['standing', 'sitting', 'lying
### 解决 X-AnyLabeling 导出 YOLO 标签数据为空的问题 当遇到X-AnyLabeling导出YOLO标签数据为空的情况,可能由多种原因引起。以下是几种常见的排查方法和解决方案: #### 配置文件检查 确保配置文件中的参数设置无误。特别是对于模型的相关配置项,如`model_path`, `nms_threshold`, `confidence_threshold`等字段应根据实际情况合理设定[^3]。 #### 数据集验证 确认所使用的图像数据集中确实存在目标对象可供标注。如果图片本身不包任何可识别的目标,则即使有正确的模型也无法生成有效的边界框信息。 #### 模型兼容性 核实正在使用的AI模型是否支持YOLO格式的输出。某些情况下,特定版本或类型的预训练模型可能并不完全适用于预期的任务类型。建议尝试官方提供的经过良好测试过的预训练权重文件来排除这一可能性[^4]。 #### 输出路径校验 仔细核对保存标签文件的具体位置与期望的位置一致。有时由于相对路径解析错误或其他因素可能导致最终结果并未写入到用户认为的地方。 #### 日志审查 查看运行日志中是否有异常提示可以帮助定位具体问题所在。通常程序会在控制台打印一些调试信息,在出现问题的时候这些记录往往能给出重要线索。 ```bash # 启动应用程序并观察终端输出 python -m anylabeling --log-level=DEBUG ``` #### 版本更新 考虑到软件持续迭代改进的可能性,保持使用最新的稳定发行版有助于规避已知缺陷带来的困扰。可以从GitHub仓库获取最新发布的二进制包进行安装升级。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值