使用MaxKB添加本地部署的Ollama大语言模型搭建智能聊天系统

文章目录

    • 1. 下载运行Ollama
    • 2. 安装大语言模型
    • 3. 安装Cpolar工具
    • 4. 配置公网地址
    • 5. 固定公网地址
    • 6. MaxKB 添加Olama
    • 7.创建问答应用

MaxKB 是一款基于 LLM 大语言模型的知识库问答系统,支持开箱即用,当MaxKB接入本地大语言模型的时候,限制只能使用域名才能接入,无法使用本地或者局域网IP进行设置添加本地大语言模型,本文介绍结合cpolar内网穿透工具,实现MaxKB 成功导入本地的大语言模型!

cpolar是一种安全的内网穿透服务。它能够将内网下的本地服务器通过安全隧道暴露至公网,使得公网用户可以正常访问内网服务。cpolar支持多种操作系统,包括Windows、Mac和Linux,同时支持多种协议,如TCP、UDP和HTTP等,这使得它适用于各种不同的开发和生产环境,并能够灵活地与内网设备进行通信。

下面介绍在windwos本地运行大语言模型框架Ollama,并在Ollama中下载大语言模型llama2,然后在MaxKB中导入添加该windwos运行的本地大语言模型到MaxKB中,创建属于我们自己的智能问答应用,无需公网IP,无需域名即可实现!

请添加图片描述

1. 下载运行Ollama

进入Ollama Github 界面:https://github.com/ollama/ollama?tab=readme-ov-file ,我们选择windwos版本下载

image-20240425174856953

下载后,双击进行安装,默认会安装到C盘,然后等待安装完成,安装完成后正常会自动运行,如果没有运行,可以去应用列表双击运行即可

image-20240425161045182

然后打开命令窗口,输入:ollama -v,可以看到版本信息

image-20240425161026879

同样,在浏览器输入http://127.0.0.1:11434/访问ollama服务,即可看到,运行的字样,表示本地运行成功了,下面进行安装大语言模型.

image-20240425163201117

2. 安装大语言模型

ollama安装完成后,下面进行下载运行大语言模型,本例采用llama2模型,当然还有其他模型,可以到github上面选择,命令窗口输入下面命令

ollama run llama2

然后等待安装完成即可,出现success 表示下载完成了,然后按ctrl+d 退出,

image-20240425161508422

然后再输入ollama list 即可看到下载的大语言模型列表,本例下载了两个,所以显示两个,下面我们安装cpolar内网穿透工具,实现远程也可以调用Ollama这个大语言模型框架,远程通信!

image-20240425162719276

3. 安装Cpolar工具

本例介绍的是windwos系统,所以cpolar安装在windwos上,点击下面地址访问cpolar官网,注册一个账号,然后下载并安装客户端.

Cpolar官网:https://www.cpolar.com/

  • windows系统:在官网下载安装包后,双击安装包一路默认安装即可。

cpolar安装成功后,在浏览器上访问本地9200端口【http://localhost:9200】,使用cpolar账号登录,即可看到Cpolar 管理界面,然后一切设置只需要在管理界面完成即可!

20230130105810

4. 配置公网地址

点击左侧仪表盘的隧道管理——创建隧道,创建一个ollama的公网http地址隧道!

  • 隧道名称:可自定义命名,注意不要与已有的隧道名称重复
  • 协议:选择http
  • 本地地址:11434
  • 域名类型:免费选择随机域名
  • 地区:选择China
  • host头域: 127.0.0.1:11434

点击创建(点击一次创建按钮即可,不要重复点击!)

image-20240425164541494

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https,两种都可以访问,下面选择其中一种进行远程访问

image-20240425164750350

在浏览器输入创建的公网地址,我们可以看到,同样看到了ollama 运行的字样,表示公网访问成功了!

image-20240425164932130

小结

为了更好地演示,我们在前述过程中使用了cpolar生成的隧道,其公网地址是随机生成的。

这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址由随机字符生成,不太容易记忆(例如:3ad5da5.r10.cpolar.top)。另外,这个地址在24小时内会发生随机变化,更适合于临时使用。

我一般会使用固定二级子域名,原因是我希望将网址发送给同事或客户时,它是一个固定、易记的公网地址(例如:ollama.cpolar.cn),这样更显正式,便于流交协作。

5. 固定公网地址

由于以上使用cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化【ps:cpolar.cn已备案】

注意需要将cpolar套餐升级至基础套餐或以上,且每个套餐对应的带宽不一样。【cpolar.cn已备案】

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留,保留成功后复制保留的二级子域名名称

image-20240425170206232

保留成功后复制保留成功的二级子域名的名称

image-20240425170229252

返回登录cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

image-20240425170306512

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名

点击更新(注意,点击一次更新即可,不需要重复提交)

image-20240425170340455

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址二级名称变成了我们自己设置的二级子域名名称

image-20240425170405890

下面我们打开浏览器,输入cpolar中固定的公网地址,即可看到同样是访问成功了,这样一个固定的公网访问ollama 的公网地址就设置好了,下面我们在MaxKB中添加调用我们本地模型

image-20240425170625772

6. MaxKB 添加Olama

MaxKB是一个基于大语言的问答系统,可以说是一个前端界面,支持对接多个大语言模型,具体可以可以看一下Gitee开源地址了解:https://gitee.com/aqie-project/MaxKB,成功运行MaxKB,登录进去后,点击,系统设置,选择模型设置,再选择Ollama,然后点击添加模型

image-20240425171446841

前面4个参数正常填写选择即可,模型选择llama2,目前页面没有llama3选项,我们选择2即可.然后API域名输入cpolar公网地址,注意,这里只能输入域名

image-20240425171805984

然后看下面API key参数,这里需要一个key,这个key在我们最开始运行Ollama软件的时候,在运行的日志里面可以找到

image-20240425171915578

在右下角我们可以找到运行的小图标,右键点击

image-20240425172233489

然后查看日志位置

image-20240425172519452

打开这个名称为server.log的日志文件

image-20240425172611849

在这个文件最开始,我们可以看到key的信息,注意是下面框住的这一部分是keyimage-20240425172709998

然后把key 输入到API Key 框里面

image-20240425172831464

然后点击添加即可

image-20240425172942489

最后我们可以看到成功添加了,如果在添加过程中没有llama2的大语言模型,这里也会自动下载

image-20240425173035737

7.创建问答应用

点击应用,我们创建一个问答应用,模型可以看到选择我们刚刚添加的大语言模型

image-20240425173453802

创建完成后,点击演示,进入问答页面

image-20240425173607557

然后就可以进行对话了,llama2是一个英文模型,基本的回答都是英文,当然可以自己导入设置其他模型,方式也是一样的,由于运行在windows设备,设备配置越高,响应越快,这样一个智能问答应用就设置好了!

image-20240425174156925

### 本地部署 Ollama 和 Dify 的方法 #### 部署 Ollama Ollama 是一种用于管理和运行大型语言模型 (LLM) 的开源工具。以下是其基本部署流程: 1. **安装 Ollama** 使用以下命令来安装 Ollama 工具链,适用于大多数 Linux 或 macOS 系统。对于 Windows 用户,则需通过 WSL 来完成操作[^1]。 ```bash curl https://ollama.ai/install.sh | sh ``` 2. **启动服务** 安装完成后,可以通过以下命令启动 Ollama 服务: ```bash ollama serve & ``` 此命令会在后台运行 Ollama API 服务器。 3. **下载模型** 下载所需的 LLM 模型至本地环境。例如,下载 `llama2` 模型可执行如下命令: ```bash ollama pull llama2 ``` 4. **测试模型接口** 测试已加载的模型是否正常工作,可通过 HTTP 请求调用 API 接口验证功能。例如,使用 `curl` 命令发送请求: ```bash curl -X POST http://localhost:11434/api/generate \ -H 'Content-Type: application/json' \ -d '{"model":"llama2","prompt":"Hello"}' ``` --- #### 部署 Dify 平台并与 Ollama 进行集成 Dify 是一款支持自定义对话应用的应用开发平台,能够轻松对接多种 LLM 提供商。以下是具体的部署过程: 1. **克隆项目仓库** 获取 Dify 开源项目的代码库,并切换到稳定分支版本: ```bash git clone https://github.com/dify-ai/dify.git cd dify git checkout stable ``` 2. **初始化依赖项** 初始化必要的 Python 虚拟环境以及安装所需依赖包: ```bash python3 -m venv .venv && source .venv/bin/activate pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` 3. **配置文件修改** 编辑 `.env.example` 文件中的参数以适配实际需求,并重命名为 `.env` 后保存更改。特别注意设置与 Ollama 对接的相关字段,如 API 地址等信息[^2]: ```plaintext OPENAI_API_BASE=http://localhost:11434 MODEL_NAME=llama2 ``` 4. **运行应用程序** 执行以下脚本启动 FastAPI Web 应用程序实例: ```bash uvicorn app.main:app --host 0.0.0.0 --port 8000 ``` 5. **实现外网访问(可选)** 如果希望外部网络也能连接到您的本地服务,推荐采用内网穿透技术。比如利用 cpolar 创建一条固定的公网隧道[^3]: ```bash ./cpolar tcp 8000 ``` 6. **绑定静态域名** 登录 Cpolar 控制面板,在线为其分配一个永久有效的二级子域名称作为入口地址。 --- ### 注意事项 - 在生产环境中建议启用 HTTPS 加密传输协议保护数据安全; - 根据硬件性能调整并发处理能力及相关资源限制策略;
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGGIT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值