练习瑕疵还有穿帮怎么修

在这里插入图片描述

像这种穿帮我们改怎么处理?

首先我们需要把图片的图像模式里面的通道改为16位(如果不改的话后面会出现很明显的摩尔纹)在处理完背景没问题的时候再回到这个模式改为8位。

摩尔纹,是一种在数码照相机或者扫描仪等设备上,感光元件出现的高频干扰的条纹,是一种会使图片出现彩色的高频率不规则的条纹。
在这里插入图片描述

首先我们我们需要用选区选中两边的白色区域要修补的位置,往两侧拉。
在这里插入图片描述
在这里插入图片描述
然后用快速选择工具把背景选出来
**
选中图层 1 拷贝Ctrl+Alt+G盖印在下个图层上面
**在这里插入图片描述
点击图层 1 拷贝点滤镜-模糊-高斯模糊
在这里插入图片描述
背景这个时候是不是更舒服了呢?但是还有一个问题这个背景的颜色不是很统一,这个时候我们就需要用画笔工具去吸取颜色大面积涂抹 ,把它涂抹的均匀些。
或者可以用渐变的工具吸取上面和下面的颜色拉一下也行。
在这里插入图片描述
这个是我使用渐变色做的背景。这个背景处理还没有结束哦
我们需要回到图层 1 拷贝,因为背景是抠出来的在毛发部分是一定没有融合的很融洽的。
在这里插入图片描述
在这里插入图片描述
在这个图层我们点击蒙版就会在该图层形成一个空白的蒙版

蒙版作用:蒙版就是用它来遮掉你不想要的那一部分用黑色在白色框里面去涂抹。根据个人的需要还也可以调整黑色的透明度去调整。如果一不小心涂抹多了,相反我们可以用白色把它 给涂抹回来。

在这里插入图片描述

在这里插入图片描述
这个时候我们需要用黑色的画笔去涂抹头发的边缘。把原来的头发涂抹出来,也不是全部。根据图片修饰边缘自然利落。
在这里插入图片描述

在这里插入图片描述
所以抠图的时候不一定需要非常的细,这样做都是可以涂抹回来的。

把毛发细节处理好了之后点击这个眼睛,看看和没有处理的片子对比看下有没有哪里没有处理到位的衣服头发。耳朵是比较容易漏掉的,这个要注意。
把毛发细节处理好了之后点击这个眼睛,看看和没有处理的片子对比看下有没有哪里没有处理到位的衣服头发。耳朵是比较容易漏掉的,这个要注意。
然后我们选中这个图层添加一点杂色,再点击编辑里面渐隐根据自己的需要来做参数
在这里插入图片描述
在这里插入图片描述
然后我们的背景就大致处理好啦,注意哦这个时候我们就需要把这个通道模式改为8位合并所有,再去修人脸。
修补工具可以淡化法令纹以及眼袋也可用于其他需要淡化的部位,勾掉加淡化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

断层以下未完成 学习中……

在这里插入图片描述
还是用污点修补工具去修补较明显的痘印。在比较熟练的情况下用修补工具也是可以处理的,控制的好也会处理的稍微较快些
在这里插入图片描述
这种情况下单纯的用污点修补工具是没办法处理的自然 因为这边光影不一样。
这个时候可以磨个皮在滤镜里面
在这里插入图片描述

在这里插入图片描述
皮肤稍微处理过瑕疵
在这里插入图片描述
这个是磨完p之后的效果会让皮肤稍微光滑一点,然后再用修补工具去处理下瑕疵

这个处理好像比较难还没搞定

【资源说明】 基于python实现手写痕迹文档图像摩尔消除源码+项目运行说明.zip 二、数据分析 **数据划分**:使用1000张做为训练集,81张作为验证集。 官方提供了训练集1081对,测试集A、B各200张。包含以下几个特征: 1.图像分辨率普遍较大 2.手写字包含红黑蓝多种颜色,印刷字基本为黑色 3.手写字除了正常文字外,还包含手画的线段、图案等内容 4.试卷上的污渍、脏点也属于需要去除的内容 5.手写字和印刷字存在重叠 **mask**:根据原始图片和标签图像的差值来生成mask数据 计算RGB通道的平均差值 平均差值在20以上的设为 1 平均差值在20以下的设为 差值/20 三、模型设计 网络模型,是基于开源的EraseNet,然后整体改成了Paddle版本。同时也尝试了最新的PERT:一种基于区域的迭代场景文字擦除网络。基于对比实验,发现ErastNet,在本批次数据集上效果更好。从网络结构图上可以直观的看出ErastNet是多分支以及多阶段网络其包括mask生成分支和两阶段图像生成分支。此外整个网络也都是基于多尺度结构。在损失函数上,原版的ErastNet使用了感知损失以及GAN损失。两个损失函数,是为了生成更加逼真的背景。但是本赛题任务的背景都是纯白,这两个损失是不需要的,可以直接去除。此外,由于ErastNet网络是由多尺度网络组成,结合去摩尔比赛的经验,我把ErastNet网络的Refinement替换成了去摩尔比赛使用的多尺度网络 双模型融合: 模型一:erasenet去掉判别器部分,仅保留生成器 模型二:erasenet二阶段网络使用基于Non-Local的深度编解码结构 四、训练细节 **训练数据:** 增强仅使用横向翻转和小角度旋转,保留文字的先验 随机crop成512x512的patch进行训练 **训练分为两阶段:** 第一阶段损失函数为dice_loss + l1 loss 第二阶段损失函数只保留l1 loss ## 五、测试细节 测试trick: **分块测试**,把图像切分为512x512的小块进行预测,保持和训练一致 **交错分块测试**,测试图像增加镜像padding,且分块时边缘包含重复部分,每次预测仅保留每块预测结果的心部分,这么做的原因是图像边缘信息较少,预测效果要差于心部分 测试时对**测试**数据使用了横向的镜像**增强** 测试时将两个**模型**的预测结果进行**融合** 七、其他 data:定义数据加载 loss:定义损失函数 model:定义网络模型 compute_mask.py:生成mask文件 test.py: 测试脚本 train.py: 训练脚本 代码运行: 1.指定数据文件夹 2.运行sh train.sh 生成mask并开始训练 3.指定测试文件夹和模型路径,执行sh test.sh开始测试 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值