欧拉函数、欧拉定理、费马小定理

本文介绍了欧拉定理及其在数论中的应用,特别是与费马小定理的关系。欧拉函数φ(n)用于计算与n互质的正整数数量,对于质数n,φ(n)=n-1。文章提供了两种计算欧拉函数的算法,一种是朴素方法,另一种使用筛法。同时,讨论了当m为质数时,根据欧拉定理a^φ(m) ≡ 1 (mod m) 的性质。
摘要由CSDN通过智能技术生成

欧拉定理:

设 n ,m  ∈ N+ ,gcd(n,m) = 1 , 则 n^{\phi (m)} ≡ 1(mod m);

我们先来看一个欧拉函数 φ(n):

正整数n,欧拉函数是小于n的正整数中与n互质的数的数目.

当n为质数时,φ(n) = n - 1;

根据质因数分解:

N = p_{1}^{a_{1}} p_2^{a_{2}} .......p_{m}^{a_{m}}

\phi(n) = n * \frac{p_{1} - 1}{p_{1}} * \frac{p_{2} - 1}{p_{2}}.......* \frac{p_{m} - 1}{p_{m}}

费马小定理:

根据欧拉定理,若m为质数,则 n^{m-1} ≡ 1(mod m);

求欧拉函数的值:

//朴素做法
int get_euler(int n)
{
	int res = n;
	for(int i=2;i<=n/i;i++)
	{
		if(n%i == 0)
		{
			res = res / i * (i-1);
			while(n%i == 0) n /= i;
		}
	}
	if(n>1) res = res / n *(n-1);
	
	return res;
}
//筛法
LL get_euler(int n)
{
    phi[1] = 1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
          prime[++cnt] = i; 
          phi[i] = i-1;
        }
        for(int j =1;prime[j] <= n/i ;j++)
        {
            st[prime[j] * i] = true;
            if(i % prime[j] == 0)
            {
                phi[i*prime[j]] = phi[i] * prime[j];
                break;
            }
            else
            {
                phi[prime[j] * i] = phi[i]*( prime[j] - 1); 
            }
        }
    }

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是饿梦啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值