在ML,DL等领域的学习过程中,使用笔记本之类的设备难免遇到性能不足或者长时间等待训练结果的情况。
可按导航自行查看需要内容
而Kaggle平台提供了免费的GPU在线使用,以下为使用教程
Kaggle官网:Kaggle: Your Machine Learning and Data Science Community
第一步:用户注册
需要科学上网!!!
这里跟随网址正常去Sign填信息即可
第二步:手机验证
需要科学上网!!!
首先,点击Home界面右上角头像
然后,Settings
最后一步,点击Phone verification(手机验证)我这里已经验证过了,不同于未验证
验证界面需要科学上网,会出现人机验证按钮,否则因为网络原因仅输入手机号后验证按钮无法点击!!!!!!!
至此手机验证结束
第三步:Notebook使用
1.返回首页点击导航栏Code,
2.Code界面如下,分别为创建新Note和查看历史note,第一次使用直接创建新note即可
3.打开note后界面如下,基本操作同Jupyter Notebook,有操作教程需要可自行查找,这里不赘述:
这一步注意代码栏右上角启动按钮,现在是灰色即未启动,运行前需先启动内核,点击即可
启动中:
已启动:
4.GPU选择如下,可以自行选择操作,如GPU P100,直接选中即可:
选中后需重启内核,步骤同上;验证GPU使用情况:
到此使用教程结束
第四步:常见问题
1.需要安装自己想用的包
(启动内核后再安装,更换内核需重新安装):
首先:Settings栏点击Turn on internet:打开互联网,用于下载安装包
打开后状态为:
代码栏运行:!pip install xxx(XXX为你要安装的包名)
后续即可使用
2.数据集使用
代码编辑界面右下角,有一个箭头标,第一次使用可能注意不到,点击可弹出dataset界面
界面如下:
其中Add input:使用平台数据集,选想用的datasets点击+号即可:
upload即上传自己的数据集,同理不赘述
添加完成后,Add Input界面可关掉(点击Add Input界面右上角X)
点击要用的datasets后面的复制路径(copy file path):
代码中引用举例如下:
保存数据:
train.to_csv('TestTraindata.csv')
Output出现自己保存的数据csv,未出现可稍等并刷新,数据集悬浮鼠标点击...可看到Download按键,用于提交或保存。
至此,gpu+code自己的数据集基本步骤完成,自由发挥coding,祝好