MATLAB | 设置滑动窗口计算栅格数据的CV变异系数

图片

一、变异系数

变异系数(CV)是衡量数据稳定性的重要指标,表示数据的波动程度,计算方式是标准差与均值的比值。在栅格数据分析中,较低的变异系数意味着数据变化较小、稳定性较高,而较高的变异系数则表明数据波动较大、稳定性较低。

二、MATLAB代码

本次我们采用滑动窗口方法来计算每个时间段内栅格数据的变异系数。通过这种方法,我们可以识别出在不同时间段内变化较大或稳定的区域。同时,此代码还能提取每个滑动窗口栅格数据变异性的最小值、最大值和平均值。

图片

图片

 

 

### 计算栅格数据变异系数 #### 使用MATLAB中的滑动窗口计算栅格数据变异系数 为了识别不同时段内变化较大或稳定的区域,可以采用滑动窗口方法来计算每个时段内的栅格数据变异系数。该方法不仅能够评估局部变异性,还可以提取每个滑动窗口栅格数据变异性的最小值、最大值和平均值[^1]。 下面是一个基于MATLAB实现上述功能的例子: ```matlab % 定义函数用于读取栅格文件并设置参数 function CV = calculateCV(rasterFile, windowSize) % 加载栅格数据 rasterData = geotiffread(rasterFile); % 初始化变量存储结果 meanValues = []; stdDevValues = []; % 遍历整个图像应用滑动窗口操作 for i = 1 : size(rasterData, 1) - windowSize + 1 for j = 1 : size(rasterData, 2) - windowSize + 1 % 提取当前窗口的数据子集 subSet = double(rasterData(i:i+windowSize-1,j:j+windowSize-1)); % 跳过含有NaN值的情况 if any(isnan(subSet(:))) continue; end % 计算均值与标准差 mu = mean(subSet,'all'); sigma = std(subSet,[],'all'); % 存储中间结果以便后续处理 meanValues(end+1)=mu; stdDevValues(end+1)=sigma; end end % 变异系数定义为标准偏差除以绝对平均值得到的结果乘以百分之一百表示成百分数形式 CV = (stdDevValues ./ abs(meanValues)) * 100; end ``` 这段代码展示了如何利用MATLAB内置的功能来进行栅格数据分析,并通过自定义`calculateCV()` 函数实现了对指定大小区域内像素强度分布特征的有效描述——即变异系数(CV)。 #### 利用Python编写的小程序辅助遥感影像分析 对于那些希望通过更灵活的方式完成这项工作的用户来说,也可以考虑使用Python编写的专门针对此类需求设计的应用程序。这类应用程序通常具备友好的图形界面,使得即使是对编程不太熟悉的地理信息系统(GIS)工作者也能轻松上手。例如,有一个开源项目提供了便捷的方式来批量处理多张遥感图片,支持多种统计量的选择,包括但不限于变异系数计算[^2]。 #### ENVI环境下的解决方案 如果倾向于依赖专业的商业级GIS平台,则可以选择ESRI ArcMap 或者 Exelis Visual Information Solutions出品的ENVI等产品。这些平台上往往已经预置了许多高级工具和服务,可以直接调用来执行复杂的任务而无需额外编码工作。比如,在ENVI中可以通过特定模块或者插件的形式快速获得所需指标,尽管具体步骤可能因版本差异有所不同[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS遥感数据处理应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值