- 卷积原理
① Conv1d代表一维卷积,Conv2d代表二维卷积,Conv3d代表三维卷积。
② kernel_size在训练过程中不断调整,定义为3就是3 * 3的卷积核,实际我们在训练神经网络过程中其实就是对kernel_size不断调整。
③ 可以根据输入的参数获得输出的情况,如下图所示。
2. 搭建卷积层
import torch
from torch import nn
import torchvision
from torch.nn import Conv2d
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0) # 彩色图像输入为3层,我们想让它的输出为6层,选3 * 3 的卷积
def forward(self,x):
x = self.conv1(x)
return x
tudui = Tudui()
print(tudui)
- 卷积层处理图片
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0) # 彩色图像输入为3层,我们想让它的输出为6层,选3 * 3 的卷积
def forward(self,x):
x = self.conv1(x)
return x
tudui = Tudui()
for data in dataloader:
imgs, targets = data
output = tudui(imgs)
print(imgs.shape) # 输入为3通道32×32的64张图片
print(output.shape) # 输出为6通道30×30的64张图片
- Tensorboard显示
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0) # 彩色图像输入为3层,我们想让它的输出为6层,选3 * 3 的卷积
def forward(self,x):
x = self.conv1(x)
return x
tudui = Tudui()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
output = tudui(imgs)
print(imgs.shape)
print(output.shape)
writer.add_images("input", imgs, step)
output = torch.reshape(output,(-1,3,30,30)) # 把原来6个通道拉为3个通道,为了保证所有维度总数不变,其余的分量分到第一个维度中
writer.add_images("output", output, step)
step = step + 1
① 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。logdir是写入自己的log的绝对路径。