本节基于Keras搭建全连接神经网络,实现对mnist手写数字的识别。通过设置不同的优化器、损失函数,观察模型训练效果。此外,为防止过拟合,在代码中向读者展示了正则化和dropout的使用方法。代码如下:
'''
通过全连接神经网络实现mnist手写数字分类
1 对比交叉熵损失与均方误差损失函数对训练结果的影响
2 对比不同优化算法对训练结果的影响
'''
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.datasets import mnist
from keras.optimizers import SGD, Adam, Adagrad, RMSprop
from keras.regularizers import l2
from keras.utils import np_utils
import matplotlib.pyplot as plt
class Classification:
def __init__(self):
(self.x_train, self.y_train), (self.x_test, self.y_test) = mnist.load_data()
dim = self.x_train.shape[1] * self.x_train.shape[2]
self.x_train, self.x_test = self.x_train.reshape((self.x_train.shape[0], -1)) / 255, self.x_test.reshape((self.x_test.shape[0], -1)) / 255
self.y_train, self.y_test = np_utils.to_categorical(self.y_train, num_classes = 10), np_utils.to_categorical(

最低0.47元/天 解锁文章
2270

被折叠的 条评论
为什么被折叠?



