Keras:搭建全连接神经网络进行mnist手写数字识别

       本节基于Keras搭建全连接神经网络,实现对mnist手写数字的识别。通过设置不同的优化器、损失函数,观察模型训练效果。此外,为防止过拟合,在代码中向读者展示了正则化和dropout的使用方法。代码如下:

'''
通过全连接神经网络实现mnist手写数字分类
1 对比交叉熵损失与均方误差损失函数对训练结果的影响
2 对比不同优化算法对训练结果的影响
'''

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.datasets import mnist
from keras.optimizers import SGD, Adam, Adagrad, RMSprop
from keras.regularizers import l2
from keras.utils import np_utils
import matplotlib.pyplot as plt

class Classification:
    def __init__(self):
        (self.x_train, self.y_train), (self.x_test, self.y_test) = mnist.load_data()
        dim = self.x_train.shape[1] * self.x_train.shape[2]
        self.x_train, self.x_test = self.x_train.reshape((self.x_train.shape[0], -1)) / 255, self.x_test.reshape((self.x_test.shape[0], -1)) / 255
        self.y_train, self.y_test = np_utils.to_categorical(self.y_train, num_classes = 10), np_utils.to_categorical(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值