概率论
概率的性质
减法公式
·A-B=AB的逆·
应用
画图更简单
abc至少有一个发生表示 P(A并B并C)
P(ABC)《P(AB)=0
条件概率的性质
应用
古典概型
应用:
不放回抽样
全概率公式和贝叶斯公式
全概率公式的使用条件:A事件可以被多个事件分割
一直结果判断情况用贝叶斯公式
应用:
全概率公式
题目10:
事件的独立性
独立性:积的概率等于概率的积
应用
例题12:
解:
离散型随机变量与分布函数
离散型分布函数 是求和,连续型分布函数是求积分
应用:
分布函数
相邻区间变化的概率就是左端点的概率
二项分布和泊松分部
应用:
二项分布
泊松分布:直接套用公式
连续型分布函数
应用:
求概率:
题19:
均匀分布:
应用
正态分布
应用:
画图最简单
离散型随机变量的分布
应用
连续型随机变量的函数求导
解法:将Y看做常数,将X由Y表示
应用:
问题23:
问题24
用到了连续型随机变量函数极限为 0 和 1 的性质
二维离散型随机变量的分布
判断X和Y是否独立的条件:p(x=0,y=0)=p(x=0)*p(y=0)
应用:
二维连续型随机变量的分布
应用:
求条件概率
题27:
求边缘密度和联合密度
判断独立性:联合密度等于 边缘密度的积
题目:
二维连续型分布的结合考点
1:求二维连续型分布的密度函数
2.独立性:
应用:
题三十一
正态分布独立性
数学期望
应用:
离散型随机变量的期望
方差和标准差
应用:
二维随机变量的期望和方差
求出边缘分布的期望 就能得到方差
常用分布的期望和方差
应用:
`平方的期望 = 方差+期望的平方`
题目:37 期望和方差的应用
泊松分布期望的应用:
协方差和相关系数
应用:
连续联合密度函数的方差求法:
1.求出X,Y的边缘密度 求得X或Y的期望 再求积
2.
应用:
随机联合函数的期望和方差
求随机联合函数的相关系数:
三大分布(填空题)
距估计
应用:
离散型随机变量的距估计
连续型随机变量的距估计
中心距与原点矩
第七章:参数估计
样本的距估计总体的原点矩
均匀分布的样本距估计
置信区间
枢轴变量的运用
求正太分布的均值或方差估计 色i个嘛已知
总体的塞戈马未知 求正态分布的平均值和方差