Machine Learning with Matminer(附代码)

1. Matminer 介绍

  随着材料数据集的规模和范围的扩大,数据挖掘和统计学习方法在分析这些材料数据集和建立预测模型方面的作用变得越来越重要。Matminer是一个开源的、基于python的软件平台,以促进数据驱动的方法来分析和预测材料的属性。Matminer提供了用于从外部数据库中检索大型数据集的模块,如the Materials Project, Citrination, Materials Data Facility, and Materials Platform for Data Science。它还提供了由材料社区开发的广泛的特征提取例程库的实现,包括47个特性类,这些类可以生成数千个单独的描述符,并将它们组合成数学函数。最后,matminer提供了一个可视化模块,用于生成交互式的、可共享的绘图。这些函数的设计方式与Python数据科学社区已经开发和使用的机器学习和数据分析包紧密集成。[1]

2. Matminer安装

pip install matminer

3. ML with Matminer

3.1 获取Matminer内置数据集

  获取内置数据集名字

from matminer.datasets import get_available_datasets
print(get_available_datasets())    # 获取内置数据集名字

在这里插入图片描述
  下载内置数据集,并查看描述性统计信息

from matminer.datasets import load_dataset
df = load_dataset("dielectric_constant",data_home='.')
print(df.head(5))
print(df.columns)
print(df.describe())
print(df["band_gap"])  # 查看数据带隙性质数据
print(df["band_gap"].values)  # 带隙性质数据转化为array数组
print(df.iloc[20])  # 查看索引为20的材料数据

  数据清洗

cleaned_df = df.drop(["nsites","space_group"],axis=1)
print(cleaned_df.head(3))

3.2 建立特征

  1. 使用dielectric_constant数据集举例,首先下载数据集

df = load_dataset("dielectric_constant",data_home='.')
print(df.columns)

   输出结果如下

Index(['material_id', 'formula', 'nsites', 'space_group', 'volume',
       'structure', 'band_gap', 'e_electronic', 'e_total', 'n',
       'poly_electronic', 'poly_total', 'pot_ferroelectric', 'cif', 'meta',
       'poscar'],
      dtype='object')

  2. 转化formula到Composition

from matminer.featurizers.conversions import StrToComposition
stc = StrToComposition()
df = stc.featurize_dataframe(df,'formula')
print(df.columns)

   输出结果如下

Index(['material_id', 'formula', 'nsites', 'space_group', 'volume',
       'structure', 'band_gap', 'e_electronic', 'e_total', 'n',
       'poly_electronic', 'poly_total', 'pot_ferroelectric', 'cif', 'meta',
       'poscar', 'composition'],
      dtype='object')

  3. 添加composition特征

from matminer.featurizers.composition import ElementFraction
ele = ElementFraction()

df = ele.featurize_dataframe(df,'composition')
print(df.columns)

   输出结果如下

Index(['material_id', 'formula', 'nsites', 'space_group', 'volume',
       'structure', 'band_gap', 'e_electronic', 'e_total', 'n',
       ...
       'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr'],
      dtype='object', length=120)

   4. 添加structure特征

from matminer.featurizers.structure import DensityFeatures

den = DensityFeatures()

df = den.featurize_dataframe(df,"structure")
print(df.columns)

   输出结果如下

Index(['material_id', 'formula', 'nsites', 'space_group', 'volume',
       'structure', 'band_gap', 'e_electronic', 'e_total', 'n',
       ...
       'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'density', 'vpa',
       'packing fraction'],
      dtype='object', length=123)

3.3 使用随机森林对带隙性质进行预测

  构造用于机器学习模型的数据特征和数据标签

y = df['band_gap'].values
X = df.drop(['material_id', 'formula','structure', 'band_gap','e_electronic', 'e_total', 'n',
       'poly_electronic', 'poly_total', 'pot_ferroelectric', 'cif', 'meta',
       'poscar','composition'],axis=1)
print(X.columns)

  划分训练集和测试集

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test  = train_test_split(X,y,test_size=0.2)

  使用随机森林拟合回归模型并对测试数据进行预测

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100)
rf.fit(X_train,y_train)
y_pred = rf.predict(X_test)
print(y_pred)

  计算拟合RMSE

from sklearn.metrics import mean_absolute_error
mse = mean_absolute_error(y_test,y_pred)
import numpy as np
print(np.sqrt(mse))  # 0.8358410068184292

  使用10折交叉验证测试算法的准确性

from sklearn.model_selection import KFold
kfold = KFold(n_splits=10)
from sklearn.model_selection import cross_val_score
scores = cross_val_score(rf,X_train,y_train,scoring='neg_mean_squared_error',cv=kfold) 
 # 10个值代表10次交叉验证的结果
print(scores)  
# [-1.50546588 -1.0717101  -0.93992207 -0.9835829  -0.74685609 -0.92841462
# -0.99700837 -1.76563376 -0.76767876 -0.99548007]
rmse_scores = [np.sqrt(abs(s)) for s in scores]  # 计算10次交叉验证的平均值
print(np.mean(rmse_scores))  
# 1.0252397819735934   

参考

[1] Matminer: An open source toolkit for materials data mining
[2] 视频

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值