DGCL: dual-graph neural networks contrastive learning for molecular property prediction 解读

DGCL(Dual-Graph Contrastive Learning with Mixed Molecular Fingerprints)是基于 双图神经网络(GNNs) 的对比学习(CL)方法,并结合了 混合分子指纹(MFPs) 来进行分子性质预测。DGCL 方法包含两个主要阶段:

使用两种图神经网络 (GNN):

它通过一个递归的聚合过程,将每个节点的信息与其邻居的信息结合起来,从而捕获整个图的结构信息。

Graph Attention Network (GAT) 被用于捕捉图结构中的局部依赖关系,同时考虑了节点特征和边特征。GAT 的核心思想是通过注意力机制动态计算不同节点之间的相对重要性,从而为每个节点分配不同的权重。

  • GIN (Graph Isomorphism Network): 主要捕捉局部结构信息,擅长建模分子图中的邻域特征。
  • GAT (Graph Attention Network): 利用注意力机制动态分配节点之间的信息传递权重,擅长建模重要性关系。
  • 正样本对:来自同一分子图的两个特征表示ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值