DGCL(Dual-Graph Contrastive Learning with Mixed Molecular Fingerprints)是基于 双图神经网络(GNNs) 的对比学习(CL)方法,并结合了 混合分子指纹(MFPs) 来进行分子性质预测。DGCL 方法包含两个主要阶段:
使用两种图神经网络 (GNN):
它通过一个递归的聚合过程,将每个节点的信息与其邻居的信息结合起来,从而捕获整个图的结构信息。
Graph Attention Network (GAT) 被用于捕捉图结构中的局部依赖关系,同时考虑了节点特征和边特征。GAT 的核心思想是通过注意力机制动态计算不同节点之间的相对重要性,从而为每个节点分配不同的权重。
- GIN (Graph Isomorphism Network): 主要捕捉局部结构信息,擅长建模分子图中的邻域特征。
- GAT (Graph Attention Network): 利用注意力机制动态分配节点之间的信息传递权重,擅长建模重要性关系。
- 正样本对:来自同一分子图的两个特征表示ÿ