python实现简单的线性回归

sklearn.linear_model中的LinearRegression可实现线性回归

LinearRegression 的构造方法:

LinearRegression(
    fit_intercept=True, #默认值为 True,表示 计算随机变量,False 表示不计算随机变量
   
normalize=False, #默认值为 False,表示在回归前是否对回归因子X进行归一化True 表示是 ,
   
copy_X=True
)

LinearRegression 的常用方法有:

•decision_function(X) #返回 X 的预测值 y
•fit(X,y[,n_jobs]) #拟合模型
•get_params([deep]) #获取 LinearRegression 构造方法的参数信息
•predict(X) #求预测值 #同 decision_function
下面是一个简单的例子用来实现线性回归的预测

练习1:使用Python实现下面输入与输出的线性回归

输入:[[0, 0], [1, 1], [2, 2]]——两个输入

输出:[0, 1, 2]

预测:[3, 3]

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit([[0,0],[1,1],[2,2]],[0,1,2])

print(lr.predict([[3,3]]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时雨.`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值