1.整数在内存中的存储
1.1原码,反码,补码
计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位 负整数的三种表示方法各不相同。
正整数的话原反补都相同
负整数的话:
- 原码 直接将二进制按照正负数的形式翻译成二进制就可以。
- 反码 将原码的符号位不变,其他位依次按位取反就可以得到了。
- 补码 反码+1就得到补码。
- 由补码得到原码有两种方法1.把上面的过程逆着来一遍 2.再把上面的过程做一遍就可以了
存 对于整形来说:数据存放内存中其实存放的是补码。
为啥存的是补码呢有啥规则?
先来看看取值范围char 的取值范围是:[-128,127]。8个bit不是 2^8=256,数据取值范围,本质就是其实就是二进制能表示的排列组合的个数,也就是数据编码。但是[-128,127]这不是255吗?
0 000 0000 ------符号位 排列组合
0 [000 0000 ~ 111 1111] -> [0,127]
1 [000 0000 ~ 111 1111] -> [-127,-0] -0????
那范围不是应该是[-127,127]呀!为啥是[-128,127]
有两组数字比较特殊 0000 0000 (0)1000 0000(-0)我们用的是谁呢我们用的是0000 0000来表示0 那1000 0000咋办了呀这不就浪费了,那用它表示几呢?首先数据元素肯定是连续的那他不是-0那只能是-128了。
-128原码 1 1000 0000
反码 1 0111 1111 + 1
补码 1 1000 0000 存到char里面发生截断也就是 1000 0000 这不是原码吗好家伙!!!其实也就是说这种排列组合被利用了起来进行原反补的运算还是他自己,那我来取一下看看是不是就变了 数据进寄存器
1111 1111 1111 1111 1111 1111 1000 0000 整形提升
1111 1111 1111 1111 1111 1111 0111 1111
1000 0000 0000 0000 0000 0000 1000 0000 这个数据就没变我截断了照样可以存进去还可以取出来
取 先看目标数据类型(我存的是一个二进制序列,那怎样解释这个二进制序列,用什么眼光看待他),根据情况决定是否有符号位,根据他的符号位,决定如何转成原码。整个的过程也就是:
存 ——>大小端——>二进制序列——大小端——>取
1.2大小端介绍
-
大端字节序存储,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地 址中;
-
小端字节序存储,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。
判断代码
//代码1
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char *)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
//代码2
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
1.3练习
1.
1.
//输出什么?
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
// -1存进去
//1111 1111 1111 1111 1111 1111 1111 1111
//char发生截断 1111 1111
printf("a=%d,b=%d,c=%d",a,b,c);
// -1取出来
//a b符号位是- 整形提升
//1111 1111 1111 1111 1111 1111 1111 1111
//c 符号位是+ 整形提升
//0000 0000 0000 0000 0000 0000 1111 1111
return 0;
}
//a = -1 ,b = -1 ,c = 255
2.
2.
#include <stdio.h>
int main()
{
char a = -128;
// -128存进去
//1000 0000 0000 0000 0000 0000 1000 0000
//char 发生截断 1000 0000
printf("%u\n",a);
//整形提升符号位是1
//1111 1111 1111 1111 1111 1111 1000 0000
//%u 十进制无符号
return 0;
}
//a = 4294967168
3.
3.
#include <stdio.h>
int main()
{
char a = 128;
//存128
//0000 0000 0000 0000 0000 0000 1000 0000
//char截断 1000 0000
printf("%u\n",a);
//整形提升!!!!与上题异曲同工
//1111 1111 1111 1111 1111 1111 1000 0000
return 0;
}
4.
4.
#include<stdio,h>
int main(){
int i= -20;
//1000 0000 0000 0000 0000 0000 0001 0100
//1111 1111 1111 1111 1111 1111 1110 1011 + 1
//1111 1111 1111 1111 1111 1111 1110 1100
unsigned int j = 10;
//0000 0000 0000 0000 0000 0000 0000 1010
//这里是+运算涉及到隐式类型转换 操作符 左右是无符号整形和有符号整形及两边都是无符号整形
//类型转换(整数),不影响二进制序列,也就是
//1111 1111 1111 1111 1111 1111 1110 1100
//0000 0000 0000 0000 0000 0000 0000 1010 +
//------------------------------------------
//1111 1111 1111 1111 1111 1111 1111 0110
//这俩相加
printf("%d\n", i+j)
//取补码变原码 运算再来一遍
//1111 1111 1111 1111 1111 1111 1111 0110
//1000 0000 0000 0000 0000 0000 0000 1001 + 1
//1000 0000 0000 0000 0000 0000 0000 1010
//i+j = -10
}
5.
5.
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
// --就是从9--7 8 6……0
//到0的时候再--也就是0-1 也就是0+(-1)
//1111 1111 1111 1111 1111 1111 1111 1111
//循环里面比较发生隐式类型转换 这时候i就变成了4294967295在--,--得到0在进行循环
6.
6.
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
//-1+(-i) ++到127的时候
//1111 1111
//1000 0001 +
//------------
//1 1000 0000 写到 char a里面 截断1000 0000 -128
//到这块也就是-1 到 -128写到了a[i]里面
//-1+(-128)
//1111 1111
//1000 0000 +
//----------------
//1 0111 1111 写到 char a里面 截断1000 0000 127
//开始--了 减到0 开始算长度但是不算0 因为strlen是有效长度没有‘\0’也就是0 也就是 255
}
printf("%d",strlen(a)); //直到碰到‘\0’ 也就是看这个char a数组啥时候碰见0(‘\0的阿斯科码’)
return 0;
}
7.
7.
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
//跟5一个逻辑 从0++到255 再变成0++到255死循环
8.
#include <stdio.h>
int main() {
unsigned char i = 7;
//这里是无符号字符类型 他的范围是0到255
//第一次当1 - 3 = -2的时候其实是 254
//再开始-3 -3 .....
int j = 0;
for (; i > 0; i -= 3) {
++j;
//退出循环条件也就是说啥时候碰到0
//254 251 ... 5 2 ==> 共(254-2)/3+1=85次(2-3=-1,即255,继续循环)
//255 252 ... 6 3 ==> 共(255 - 5) / 3 + 1 = 85次(3 - 3 = 0,退出循环) 所以总共173次
}
printf("%d", j);
}
2.浮点数在内存中的存储
2.1一个例子
浮点数存储的例子:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
2.2 浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大? 要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
- (-1)^S * M * 2^E
- (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
- M表示有效数字,大于等于1,小于2。
- 2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M
区域E是存的和E有关的一个值 趋于M存的是一个和M有关的值
有关M的存储方式:
- 1≤M<2 ,也就是说,M可以写成 1.xxxxx 的形式,其中xxxxx表示小数部分。
- IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01(后面补0),等到读取的时候,再把第一位的1加上去。
- 这样做的目 的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字(包括1)。
有关E的存储方式:
首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们 知道,科学计数法中的E是可以出 现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位000 0000 0000 0000 0000 0000,则其二进 制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
#include <stdio.h>
int main()
{
int n = 9;
//0000 0000 0000 0000 0000 0000 0000 1001
float* pFloat = (float*)&n;
//以浮点数的视角来看
//S=0;存放E的地方全零 E=1-127=-126
//0.0000000 00000000 00001001 * 2 ^ -126
//以%f打印时 默认打印小数点6位 0.000000
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
//9.0 = 1001.0 = 1.001 * 2 ^ 3
//S = 0 M = 001 0000 0000 0000 0000 0000
//E = 3 0000 0011 加 0111 1111 等于10000010
//0100 0001 0001 0000 0000 0000 0000 0000
//1 * 2 ^ 30 +1 * 2 ^ 24 + 1 * 2 ^ 20 = 1091567616
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}