论文阅读笔记——[MPN]: Multi-task Learning with Coarse Priors for Robust Part-aware Person Re-identification

该论文提出了一种名为MPN的方法,通过多任务学习结合人体解析和分割的粗略先验知识,解决行人重识别中的肢体错位问题。通过构建主任务和辅助任务,利用通道选择和参数空间对齐策略,提高特征表示的鲁棒性和准确性。实验结果表明,这种方法在保持模型紧凑和高效的同时,提升了行人重识别的性能。
摘要由CSDN通过智能技术生成

论文:Multi-task Learning with Coarse Priors for Robust Part-aware Person Re-identification

TPAMI 2022 源代码

提出原因:

  • 学习 Part-level 级别的特征表示能够提取鲁棒的行人特征,但是由于肢体错位影响特征质量

    主要表现在两个方面:

    • 行人检测器引起的错位:身体部位的位置和比例不一致(蓝色框所示)
    • 身体柔性运动引起的错位:如手臂和腿,这些身体部位的位置和形状都有所不同(绿色框所示)

请添加图片描述

​ 对此,作者联合 人体解析(human parsing)和 人体分割( human segmentation)模型,得到粗糙的身体部位,作为先验知识

  • ResNet50 中最后一层卷积层提取的特征中,不同通道响应不同局部的身体部位

请添加图片描述

对此,作者引入多任务学习( multi-task learning),将特征图分均为 K 块,每个块为行人的局部特征。

将整张行人图片视为主任务(main task, MT),将每个局部特征视为辅任务(auxiliary task, AT),共 K 对 主—辅 任务

每对 主—辅 任务中,MT 利用 AT 中的局部肢体特征,选择对应肢体的响应通道


创新点:

  • 提出多任务学习(multi-task learning, MTL)方法:对每个身体部位构建一个主任务(main task, MT)和一个辅任务(auxiliary task, AT),两个任务目的都是 ReID,都用来做分类任务

    其中辅任务包含身体部位位置的粗先验知识,解决肢体部位错位问题

  • 提出概念转移(concept transfer)方法ATs 通过优化 MT 参数,将局部肢体部位的概念(粗先验知识)转移到 MT 中,进而从主干模型中识别出与局部特征相关的通道

    具体来说,通过两种新的对齐策略实现:

    • 以硬参数共享的方式对齐参数空间 (parameter space alignment, PSA
    • 以类的方式对齐特征空间 (feature space alignment, FSA

方法:

  • 训练阶段:

    对于任一局部肢体部位(共 K 个),包含一个主任务(MT)和一个辅任务(AT

    KATs 包含身体部位位置的粗先验知识,因此,它们可以提供归纳偏置,帮助 MTs 为每个身体部位选择相关的通道

    两者在 输入特征 上的区别:

    • MT:由主干模型生成的原始特征图 F F F
    • AT:由先验知识(粗糙的身体部位)切片得到的局部特征图 P k P_k Pk
  • 测试阶段:

    移除 AT,只利用 MTs 提取 part-level 特征表示

请添加图片描述


模块1:Coarse Prior of Body Part Locations(身体部位的粗先验知识)

先验知识基于现有两种方法得到:人体解析(human parsing)、人体分割( human segmentation

两者优缺点:

  • 人体解析:能够区分预先定义的身体部位,但忽略了有鉴别性的配件(如背包)和未定义的身体部位(如颈部)
  • 人体分割:能够将人体分割,得到行人整体轮廓,但是丢失特定的细节信息

如图 4 所示,两者均存在错误的情况,但是同时出现错误的几率很小。因此,本文将两种方法互补

请添加图片描述

先验知识 生成步骤

  1. 检查解析特征图中是否同时存在头部和至少一条腿

  2. 若同时存在,联合解析特征图和分割特征图,得到一张更可靠的人体掩码图(取并集)

    若有一个不存在,则无法得到后续人体的上下边界,对此,本文将整个图像在垂直方向上均匀分割,估计 K 个粗糙的身体部位。无需执行后续操作。

  3. 将掩码图 resize24 × 8 大小(与骨干网络得到的特征图空间大小一致),并进行二值化运算(binarize,若超过一定阈值取 1,否则取 0),再利用 1 × 2 的内核膨胀得到行人掩码 M M M</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值