摆线方程推导(向量法)

定义

一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。
在这里插入图片描述

推导

截取某时刻的状态,P为此时轨迹上的点,C为圆心,T为圆与x轴的交点。现在我们需要求点P的坐标与圆转动的角度 θ \theta θ之间的关系。
在这里插入图片描述
由向量的加法运算法则可知
O P → = O T → + T C → + C P → \overrightarrow{OP}=\overrightarrow{OT}+\overrightarrow{TC}+\overrightarrow{CP} OP =OT +TC +CP
由于 ∣ O T → ∣ \left| \overrightarrow{OT} \right| OT 为圆滚动的距离,即与圆弧 T P ⌢ \overset{\LARGE{\frown}}{TP} TP长度相等,由扇形计算公式可得 T P ⌢ = r θ \overset{\LARGE{\frown}}{TP}=r\theta TP=rθ
所以
O T → = ( r θ , 0 ) \overrightarrow{OT}=\left( r\theta ,0 \right) OT =(rθ,0)
易得
T C → = ( 0 , r ) \overrightarrow{TC}=\left( 0,r \right) TC =(0,r)
由几何关系可得
P Q = r sin ⁡ θ   ,   C Q = r cos ⁡ θ PQ=r\sin \theta \ ,\ CQ=r\cos \theta PQ=rsinθ , CQ=rcosθ
所以
C P → = ( − r sin ⁡ θ , − r cos ⁡ θ ) \overrightarrow{CP}=\left( -r\sin \theta ,-r\cos \theta \right) CP =(rsinθ,rcosθ)
最后可以求得
O P → = ( r θ − r sin ⁡ θ , r − r cos ⁡ θ ) \overrightarrow{OP}=\left( r\theta -r\sin \theta ,r-r\cos \theta \right) OP =(rθrsinθ,rrcosθ)
点P的坐标为
( r θ − r sin ⁡ θ , r − r cos ⁡ θ ) \left( r\theta -r\sin \theta ,r-r\cos \theta \right) (rθrsinθ,rrcosθ)
综上可得,摆线的方程为
{ x ( θ ) = r θ − r sin ⁡ θ y ( θ ) = r − r cos ⁡ θ \left\{ \begin{array}{l} x\left( \theta \right) =r\theta -r\sin \theta\\ y\left( \theta \right) =r-r\cos \theta\\ \end{array} \right. {x(θ)=rθrsinθy(θ)=rrcosθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值