定义
一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。
推导
截取某时刻的状态,P为此时轨迹上的点,C为圆心,T为圆与x轴的交点。现在我们需要求点P的坐标与圆转动的角度
θ
\theta
θ之间的关系。
由向量的加法运算法则可知
O
P
→
=
O
T
→
+
T
C
→
+
C
P
→
\overrightarrow{OP}=\overrightarrow{OT}+\overrightarrow{TC}+\overrightarrow{CP}
OP=OT+TC+CP
由于
∣
O
T
→
∣
\left| \overrightarrow{OT} \right|
∣∣∣OT∣∣∣为圆滚动的距离,即与圆弧
T
P
⌢
\overset{\LARGE{\frown}}{TP}
TP⌢长度相等,由扇形计算公式可得
T
P
⌢
=
r
θ
\overset{\LARGE{\frown}}{TP}=r\theta
TP⌢=rθ
所以
O
T
→
=
(
r
θ
,
0
)
\overrightarrow{OT}=\left( r\theta ,0 \right)
OT=(rθ,0)
易得
T
C
→
=
(
0
,
r
)
\overrightarrow{TC}=\left( 0,r \right)
TC=(0,r)
由几何关系可得
P
Q
=
r
sin
θ
,
C
Q
=
r
cos
θ
PQ=r\sin \theta \ ,\ CQ=r\cos \theta
PQ=rsinθ , CQ=rcosθ
所以
C
P
→
=
(
−
r
sin
θ
,
−
r
cos
θ
)
\overrightarrow{CP}=\left( -r\sin \theta ,-r\cos \theta \right)
CP=(−rsinθ,−rcosθ)
最后可以求得
O
P
→
=
(
r
θ
−
r
sin
θ
,
r
−
r
cos
θ
)
\overrightarrow{OP}=\left( r\theta -r\sin \theta ,r-r\cos \theta \right)
OP=(rθ−rsinθ,r−rcosθ)
点P的坐标为
(
r
θ
−
r
sin
θ
,
r
−
r
cos
θ
)
\left( r\theta -r\sin \theta ,r-r\cos \theta \right)
(rθ−rsinθ,r−rcosθ)
综上可得,摆线的方程为
{
x
(
θ
)
=
r
θ
−
r
sin
θ
y
(
θ
)
=
r
−
r
cos
θ
\left\{ \begin{array}{l} x\left( \theta \right) =r\theta -r\sin \theta\\ y\left( \theta \right) =r-r\cos \theta\\ \end{array} \right.
{x(θ)=rθ−rsinθy(θ)=r−rcosθ