torch.sum(tensor[index]==0).item()

文章展示了如何在PyTorch中使用tensor进行条件求和操作,以及将结果转换为标量值。通过示例代码,解释了torch.sum函数的用法,特别是在比较操作后进行求和的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a

# tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

sum = torch.sum(a[1]==0)
sum

# tensor(0)

sum = torch.sum(a[1]==0).item()
sum

# 0

a[0]==0

# tensor([ True, False, False, False])

sum = torch.sum(a[0]==0)
sum

# tensor(1)

sum = torch.sum(a[0]==0).item()
sum

# 1

a1 = torch.zeros(3,4)
a1

# tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])

sum1 = torch.sum(a1[0]==0.0)
sum1

# tensor(4)

sum1 = torch.sum(a1[0]==0.0).item()
sum1

# 4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值