acwing798 差分矩阵

前置阅读:差分

 类似差分的概念,差分矩阵我们的定义两个矩阵 A 与 B A与B AB,其中对于A矩阵的每个元素 a i j a_{ij} aij,我们有
a i j = ∑ m = 1 i ∑ n = 1 j b m n a_{ij}=\sum^i_{m=1}\sum^j_{n=1}b_{mn} aij=m=1in=1jbmn
在这里插入图片描述
 如图中的黄色部分元素之和。

 问题与我们能在上一篇博客中的相同,即如何利用算法,通过对B矩阵的元素进行操作从而简化对A矩阵的操作。在这里我们设想加入B矩阵的元素 b i j b_{ij} bij加上了某个常数c,此时A矩阵中的元素会发生什么?
在这里插入图片描述
 我们通过公式观察到只有位于 ( i , j ) (i,j) (i,j)位置右下角的A矩阵的元素会受到这个操作的影响,因为只有当 x > i , y > j x>i,y>j x>i,y>j的元素 a x y a_{xy} axy在计算时使用到了 b i j b_{ij} bij这个加上了常数c的元素,所以我们得到结论: b i j b_{ij} bij加上常数c,与此对应的, a x y ( x > i , y > j ) a_{xy}(x>i,y>j) axy(x>i,y>j)的元素全部加上了常数c。
 当我们最终的目的是对A中某个子矩阵中的元素进行加上常数c的操作。

在这里插入图片描述
 图中黄色部分为我们希望操作的部分,由上面得到的结论,我们有

b x 1 , y 1 + = c , 对应图中红色字体的“ + c " b_{x_1,y_1}+=c,对应图中红色字体的“+c" bx1,y1+=c,对应图中红色字体的+c"
b x 2 + 1 , y 1 − = c , 对图中黑色字体的 " − c " b_{x_2+1,y_1}-=c,对图中黑色字体的"-c" bx2+1,y1=c,对图中黑色字体的"c"
b x 1 , y 2 + 1 − = c , 对应图中绿色字体的 " − c " b_{x_1,y_2+1}-=c,对应图中绿色字体的"-c" bx1,y2+1=c,对应图中绿色字体的"c"
b x x 2 + 1 , y y 2 + 1 + = c ,对应图中粉色字体的 " + c " b_{x_{x_2+1},y_{y_2+1}}+=c,对应图中粉色字体的"+c" bxx2+1,yy2+1+=c,对应图中粉色字体的"+c"

代码

#include <iostream>

using namespace std;

const int N = 1010;

int n, m, q;
int a[N][N], b[N][N];

void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 + 1] -= c;
    b[x2 + 1][y2 + 1] += c;
}

int main()
{
    scanf("%d%d%d", &n, &m, &q);

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            scanf("%d", &a[i][j]);

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            insert(i, j, i, j, a[i][j]);

    while (q--)
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1, y1, x2, y2, c);
    }

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];

    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++) printf("%d ", b[i][j]);
        puts("");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值