**联合二阶矩**(或称**自相关函数**)

在随机过程中, E [ x ( t 1 ) x ( t 2 ) ] \mathbb{E}[x(t_1) x(t_2)] E[x(t1)x(t2)] 是两个时间点 t 1 t_1 t1 t 2 t_2 t2 上的信号 x ( t 1 ) x(t_1) x(t1) x ( t 2 ) x(t_2) x(t2)联合二阶矩(或称自相关函数)。这在随机过程的统计特性分析中非常重要,它描述了信号在两个不同时间点之间的关联性或相似程度。

1. 联合二阶矩(自相关函数)是什么?

自相关函数 R x ( t 1 , t 2 ) = E [ x ( t 1 ) x ( t 2 ) ] R_x(t_1, t_2) = \mathbb{E}[x(t_1) x(t_2)] Rx(t1,t2)=E[x(t1)x(t2)] 描述了随机过程在两个不同时间点 t 1 t_1 t1 t 2 t_2 t2 之间的关联程度。它反映了信号如何在时间上“相似”,即当 t 1 t_1 t1 t 2 t_2 t2 越接近时,信号在这两个时间点的相关性如何变化。

公式:

对于一个随机过程 x ( t ) x(t) x(t),其自相关函数定义为:

R x ( t 1 , t 2 ) = E [ x ( t 1 ) x ( t 2 ) ] R_x(t_1, t_2) = \mathbb{E}[x(t_1) x(t_2)] Rx(t1,t2)=E[x(t1)x(t2)]

这个公式描述了随机过程在不同时间点的联合二阶矩,它可以揭示信号的统计依赖性或自相似性。

  • t 1 = t 2 t_1 = t_2 t1=t2 时, R x ( t 1 , t 2 ) R_x(t_1, t_2) Rx(t1,t2) 等于信号在该时刻的功率方差
    R x ( t 1 , t 1 ) = E [ x ( t 1 ) 2 ] R_x(t_1, t_1) = \mathbb{E}[x(t_1)^2] Rx(t1,t1)=E[x(t1)2]

  • t 1 ≠ t 2 t_1 \neq t_2 t1=t2 时, R x ( t 1 , t 2 ) R_x(t_1, t_2) Rx(t1,t2) 描述了不同时间点之间的相关性或相似度。

2. 自相关函数的物理意义

  • 相关性:自相关函数衡量信号在不同时间点的相关性。当 t 1 t_1 t1 t 2 t_2 t2 越接近时,通常 x ( t 1 ) x(t_1) x(t1) x ( t 2 ) x(t_2) x(t2) 之间的相关性更高,反之则相关性降低。如果 R x ( t 1 , t 2 ) R_x(t_1, t_2) Rx(t1,t2) 随着 ∣ t 1 − t 2 ∣ |t_1 - t_2| t1t2 的增大而迅速衰减,表明信号的相关性很短,信号在不同时间点之间变化很快。

  • 平稳过程:对于平稳随机过程,自相关函数仅与时间差 τ = t 2 − t 1 \tau = t_2 - t_1 τ=t2t1 有关,而与具体的时间点无关。这意味着自相关函数可以简化为:
    R x ( τ ) = E [ x ( t ) x ( t + τ ) ] R_x(\tau) = \mathbb{E}[x(t) x(t + \tau)] Rx(τ)=E[x(t)x(t+τ)]
    这里 τ \tau τ 是时间间隔。平稳过程的自相关函数完全由这个时间间隔决定,而不取决于具体的 t 1 t_1 t1 t 2 t_2 t2 值。

  • 信号功率:在自相关函数中,当 t 1 = t 2 t_1 = t_2 t1=t2 时,自相关函数等于信号在该时间点的方差(或功率),即:
    R x ( 0 ) = E [ x ( t ) 2 ] R_x(0) = \mathbb{E}[x(t)^2] Rx(0)=E[x(t)2]
    这表明信号在某个时刻的强度。

3. 例子:对于 x ( t ) = cos ⁡ ( ω t + ϕ ) x(t) = \cos(\omega t + \phi) x(t)=cos(ωt+ϕ) 的自相关

假设 x ( t ) = cos ⁡ ( ω t + ϕ ) x(t) = \cos(\omega t + \phi) x(t)=cos(ωt+ϕ),其中相位 ϕ \phi ϕ 是均匀分布的随机变量,且 ϕ ∼ U ( 0 , 2 π ) \phi \sim \mathcal{U}(0, 2\pi) ϕU(0,2π)。我们可以计算自相关函数 R x ( t 1 , t 2 ) R_x(t_1, t_2) Rx(t1,t2)

计算 E [ x ( t 1 ) x ( t 2 ) ] \mathbb{E}[x(t_1) x(t_2)] E[x(t1)x(t2)]

R x ( t 1 , t 2 ) = E [ cos ⁡ ( ω t 1 + ϕ ) cos ⁡ ( ω t 2 + ϕ ) ] R_x(t_1, t_2) = \mathbb{E}[\cos(\omega t_1 + \phi) \cos(\omega t_2 + \phi)] Rx(t1,t2)=E[cos(ωt1+ϕ)cos(ωt2+ϕ)]

利用三角恒等式:
cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2}[\cos(A - B) + \cos(A + B)] cosAcosB=21[cos(AB)+cos(A+B)]

可以展开为:
R x ( t 1 , t 2 ) = E [ 1 2 ( cos ⁡ ( ω ( t 1 − t 2 ) ) + cos ⁡ ( ω ( t 1 + t 2 ) + 2 ϕ ) ) ] R_x(t_1, t_2) = \mathbb{E} \left[ \frac{1}{2} \left( \cos(\omega (t_1 - t_2)) + \cos(\omega (t_1 + t_2) + 2\phi) \right) \right] Rx(t1,t2)=E[21(cos(ω(t1t2))+cos(ω(t1+t2)+2ϕ))]

由于 ϕ \phi ϕ 是均匀分布的,且 E [ cos ⁡ ( 2 ϕ ) ] = 0 \mathbb{E}[\cos(2\phi)] = 0 E[cos(2ϕ)]=0,最终得到:
R x ( t 1 , t 2 ) = 1 2 cos ⁡ ( ω ( t 1 − t 2 ) ) R_x(t_1, t_2) = \frac{1}{2} \cos(\omega (t_1 - t_2)) Rx(t1,t2)=21cos(ω(t1t2))

这表示信号 x ( t ) = cos ⁡ ( ω t + ϕ ) x(t) = \cos(\omega t + \phi) x(t)=cos(ωt+ϕ) 的自相关函数只与 t 1 − t 2 t_1 - t_2 t1t2 有关,且随着时间差 ∣ t 1 − t 2 ∣ |t_1 - t_2| t1t2 增大而衰减。这是典型的平稳过程的特性。

4. 总结:

  • 自相关函数 R x ( t 1 , t 2 ) = E [ x ( t 1 ) x ( t 2 ) ] R_x(t_1, t_2) = \mathbb{E}[x(t_1) x(t_2)] Rx(t1,t2)=E[x(t1)x(t2)] 描述了随机过程在两个时间点之间的相关性或相似性。
  • 自相关函数在随机过程中非常重要,它能够揭示信号的依赖性、平稳性以及功率分布。
  • 对于平稳过程,自相关函数只依赖于时间差 τ = t 2 − t 1 \tau = t_2 - t_1 τ=t2t1,而与具体的时间点无关。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值