这张图讲述了**线性系统(Linear Systems)**的行为,以及它们如何通过卷积操作、频域表示和功率谱密度(PSD)来描述随机信号的影响。
1. 线性系统通过卷积描述
-
图中提到的卷积是线性系统最重要的数学描述方式之一。
对于一个输入信号 x ( t ) x(t) x(t),通过一个线性时不变系统(Linear Time-Invariant System, LTI System),其输出信号 y ( t ) y(t) y(t) 可以通过输入信号与系统的脉冲响应 h ( t ) h(t) h(t) 进行卷积来表示:
y ( t ) = x ( t ) ∗ h ( t ) y(t) = x(t) * h(t) y(t)=x(t)∗h(t)
其中, ∗ * ∗ 表示卷积运算。
卷积的物理解释:
- 脉冲响应(Impulse Response):如图所示,线性系统的行为可以通过其脉冲响应 h ( t ) h(t) h(t) 来描述。脉冲响应是系统对单位脉冲信号 δ ( t ) \delta(t) δ(t) 的响应,它可以表征系统的时域特性。
- 卷积的概念:卷积的物理意义是:输出信号 y ( t ) y(t) y(t) 是输入信号 x ( t ) x(t) x(t) 和系统脉冲响应 h ( t ) h(t) h(t) 的叠加。这种叠加包括了对输入信号每个瞬时的响应,通过将每一个小部分的输入信号与脉冲响应进行卷积,得到整体的输出。
- 图 (a) 显示了线性系统对脉冲信号 δ ( t ) \delta(t)