功率谱密度

1、信号能量与功率

对于一个连续时间信号 x ( t ) x(t) x(t)来说,在 t 1 ≤ t ≤ t 2 t_1\leq t\leq t_2 t1tt2的总能量可以定义为:
E t 1   t 2 = ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t E_{t_1~t_2}=\int_{t_1}^{t_2}|x(t)|^2dt Et1 t2=t1t2x(t)2dt
对于一个离散时间信号 x [ n ] x[n] x[n]来说,在 n 1 ≤ n ≤ n 2 n_1\leq n\leq n_2 n1nn2的总能量可以定义为:
E n 1   n 2 = ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 E_{n_1~n_2}=\sum_{n=n_1}^{n_2}|x[n]|^2 En1 n2=n=n1n2x[n]2
对于一个连续时间信号 x ( t ) x(t) x(t)来说,在 t 1 ≤ t ≤ t 2 t_1\leq t\leq t_2 t1tt2的平均功率可以定义为:
P t 1   t 2 = 1 t 2 − t 1 ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t P_{t_1~t_2}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}|x(t)|^2dt Pt1 t2=t2t11t1t2x(t)2dt
对于一个离散时间信号 x [ n ] x[n] x[n]来说,在 n 1 ≤ n ≤ n 2 n_1\leq n\leq n_2 n1nn2的平均功率可以定义为:
P n 1   n 2 = 1 n 2 − n 1 ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 P_{n_1~n_2}=\frac{1}{n_2-n_1}\sum_{n=n_1}^{n_2}|x[n]|^2 Pn1 n2=n2n11n=n1n2x[n]2

2、功率谱密度的定义

定义:单位频带内的“功率”(均方值),它描述随机信号在平均意义上的功率谱特性。

2.1、帕萨瓦尔(Parseval)定理

帕萨瓦尔定理指出,一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。它表明信号在时域的总能量等于信号在频域的总能量,即信号经傅里叶变换后其总能量保持不变,符合能量守恒定律。即
∫ − ∞ ∞ f 2 ( x ) d x = 1 2 π ∫ − ∞ ∞ ∣ F ( ω ) ∣ 2 d ω = ∫ − ∞ ∞ ∣ X ( j 2 π f ) ∣ 2 d f \int_{-\infty}^\infty f^2(x)dx=\frac{1}{2\pi}\int_{-\infty}^\infty|F(\omega)|^2d\omega=\int_{-\infty}^\infty|X(j2\pi f)|^2df f2(x)dx=2π1F(ω)2dω=X(j2πf)2df
其中 F ( ω ) = X ( j ω ) F(\omega)=X(j\omega) F(ω)=X() f ( x ) f(x) f(x)的傅里叶变换。

2.2 功率谱密度

从连续信号 f ( t ) f(t) f(t)中截取 ∣ t ∣ ≤ T / 2 |t|\leq T/2 tT/2的一段,得到一个函数,它可以表示为:
f T ( t ) = { f ( t ) ( ∣ t ∣ ≤ T 2 ) 0 ( ∣ t ∣ > T 2 ) f_T(t) =\left\{ \begin{aligned} f(t)\quad(|t|\leq \frac{T}{2})\\ 0\quad(|t|>\frac{T}{2}) \\ \end{aligned} \right. fT(t)= f(t)(t2T)0(t>2T)
f T ( t ) f_T(t) fT(t)的能量 E T E_T ET可表示为:
E T = ∫ − ∞ ∞ f T 2 ( t ) d t = ∫ − T / 2 T / 2 f 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ ∣ F T ( ω ) ∣ 2 d ω E_T=\int_{-\infty}^{\infty}f_T^2(t)dt=\int_{-T/2}^{T/2}f^2(t)dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F_T(\omega)|^2d\omega ET=fT2(t)dt=T/2T/2f2(t)dt=2π1FT(ω)2dω
所以 f ( t ) f(t) f(t)的平均功率为:
P = lim ⁡ T → ∞ ∫ − T / 2 T / 2 1 T f 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ lim ⁡ T → ∞ 1 T ∣ F T ( ω ) ∣ 2 d ω P=\lim_{T\rightarrow\infty}\int_{-T/2}^{T/2}\frac{1}{T}f^2(t)dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}\lim_{T\rightarrow\infty}\frac{1}{T}|F_T(\omega)|^2d\omega P=TlimT/2T/2T1f2(t)dt=2π1TlimT1FT(ω)2dω
T T T增加时,能量也在增加。当 T → ∞ T\rightarrow\infty T时, f T ( t ) → f ( t ) f_T(t)\rightarrow f(t) fT(t)f(t),此时 1 T ∣ F T ( ω ) ∣ 2 \frac{1}{T}|F_T(\omega)|^2 T1FT(ω)2极限可能是存在的。假设此极限存在,定义它为 f ( t ) f(t) f(t)的功率谱密度函数(功率谱),记作 P ( ω ) P(\omega) P(ω)。即 f ( t ) f(t) f(t)的功率谱为:
P ( ω ) = lim ⁡ T → ∞ ∣ F T ( ω ) ∣ 2 T ( r a d 2 / h z ) P(\omega)=\lim_{T\rightarrow\infty}\frac{|F_T(\omega)|^2}{T}(rad^2/hz) P(ω)=TlimTFT(ω)2(rad2/hz)
因此 f ( t ) f(t) f(t)的平均功率为:
P = 1 2 π ∫ − ∞ ∞ P ( ω ) d ω P=\frac{1}{2\pi}\int_{-\infty}^{\infty}P(\omega)d\omega P=2π1P(ω)dω
可以看出功率谱密度是反映单位频带内信号功率随频率的变化情况,也就是信号功率在频域内的分布情况。

参考文章

1、信号能量与功率
2、功率谱密度学习笔记

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值