1. 信道容量定义
信道容量
C
C
C 是输入和输出之间互信息
I
(
X
;
Y
)
I(X; Y)
I(X;Y) 的最大值:
C
=
max
P
(
X
)
I
(
X
;
Y
)
C = \max_{P(X)} I(X; Y)
C=P(X)maxI(X;Y)
互信息
I
(
X
;
Y
)
I(X; Y)
I(X;Y) 的公式为:
I
(
X
;
Y
)
=
H
(
Y
)
−
H
(
Y
∣
X
)
I(X; Y) = H(Y) - H(Y|X)
I(X;Y)=H(Y)−H(Y∣X)
其中:
- H ( Y ) H(Y) H(Y) 是输出符号 Y Y Y 的熵,表示接收端的总信息量。
- H ( Y ∣ X ) H(Y|X) H(Y∣X) 是条件熵,表示信道的不确定性。
对于 二进制对称信道(BSC):
- 输入 X X X 是 { 0 , 1 } \{0, 1\} {0,1}。
- P ( X = 0 ) = p 0 , P ( X = 1 ) = p 1 P(X=0) = p_0, P(X=1) = p_1 P(X=0)=p0,P(X=1)=p1,且 p 1 = 1 − p 0 p_1 = 1 - p_0 p1=1−p0。
- 信道翻转比特的概率为 p p p (即 P ( Y ≠ X ) = p P(Y \neq X) = p P(Y=X)=p)。
2. 条件概率
BSC 的条件概率定义如下:
P
(
Y
=
0
∣
X
=
0
)
=
1
−
p
,
P
(
Y
=
1
∣
X
=
0
)
=
p
P(Y = 0 | X = 0) = 1 - p, \quad P(Y = 1 | X = 0) = p
P(Y=0∣X=0)=1−p,P(Y=1∣X=0)=p
P
(
Y
=
1
∣
X
=
1
)
=
1
−
p
,
P
(
Y
=
0
∣
X
=
1
)
=
p
P(Y = 1 | X = 1) = 1 - p, \quad P(Y = 0 | X = 1) = p
P(Y=1∣X=1)=1−p,P(Y=0∣X=1)=p
3. 联合概率
联合概率
P
(
X
,
Y
)
P(X, Y)
P(X,Y) 表示输入
X
X
X 和输出
Y
Y
Y 的联合分布:
P
(
X
=
0
,
Y
=
0
)
=
P
(
Y
=
0
∣
X
=
0
)
⋅
P
(
X
=
0
)
=
p
0
(
1
−
p
)
P(X = 0, Y = 0) = P(Y = 0 | X = 0) \cdot P(X = 0) = p_0 (1 - p)
P(X=0,Y=0)=P(Y=0∣X=0)⋅P(X=0)=p0(1−p)
P
(
X
=
1
,
Y
=
1
)
=
P
(
Y
=
1
∣
X
=
1
)
⋅
P
(
X
=
1
)
=
p
1
(
1
−
p
)
P(X = 1, Y = 1) = P(Y = 1 | X = 1) \cdot P(X = 1) = p_1 (1 - p)
P(X=1,Y=1)=P(Y=1∣X=1)⋅P(X=1)=p1(1−p)
P
(
X
=
0
,
Y
=
1
)
=
P
(
Y
=
1
∣
X
=
0
)
⋅
P
(
X
=
0
)
=
p
0
p
P(X = 0, Y = 1) = P(Y = 1 | X = 0) \cdot P(X = 0) = p_0 p
P(X=0,Y=1)=P(Y=1∣X=0)⋅P(X=0)=p0p
P
(
X
=
1
,
Y
=
0
)
=
P
(
Y
=
0
∣
X
=
1
)
⋅
P
(
X
=
1
)
=
p
1
p
P(X = 1, Y = 0) = P(Y = 0 | X = 1) \cdot P(X = 1) = p_1 p
P(X=1,Y=0)=P(Y=0∣X=1)⋅P(X=1)=p1p
4. 边缘概率
边缘概率
P
(
Y
)
P(Y)
P(Y) 表示输出
Y
Y
Y 的分布:
P
(
Y
=
0
)
=
P
(
X
=
0
,
Y
=
0
)
+
P
(
X
=
1
,
Y
=
0
)
P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0)
P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)
P
(
Y
=
0
)
=
p
0
(
1
−
p
)
+
p
1
p
P(Y = 0) = p_0 (1 - p) + p_1 p
P(Y=0)=p0(1−p)+p1p
P
(
Y
=
1
)
=
P
(
X
=
0
,
Y
=
1
)
+
P
(
X
=
1
,
Y
=
1
)
P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1)
P(Y=1)=P(X=0,Y=1)+P(X=1,Y=1)
P
(
Y
=
1
)
=
p
0
p
+
p
1
(
1
−
p
)
P(Y = 1) = p_0 p + p_1 (1 - p)
P(Y=1)=p0p+p1(1−p)
5. 互信息的展开
互信息
I
(
X
;
Y
)
I(X; Y)
I(X;Y) 的公式可以写为:
I
(
X
;
Y
)
=
∑
x
∈
{
0
,
1
}
∑
y
∈
{
0
,
1
}
P
(
X
=
x
,
Y
=
y
)
log
2
P
(
X
=
x
,
Y
=
y
)
P
(
X
=
x
)
P
(
Y
=
y
)
I(X; Y) = \sum_{x \in \{0, 1\}} \sum_{y \in \{0, 1\}} P(X = x, Y = y) \log_2 \frac{P(X = x, Y = y)}{P(X = x) P(Y = y)}
I(X;Y)=x∈{0,1}∑y∈{0,1}∑P(X=x,Y=y)log2P(X=x)P(Y=y)P(X=x,Y=y)
将联合概率和边缘概率代入公式:
I
(
X
;
Y
)
=
∑
x
∈
{
0
,
1
}
∑
y
∈
{
0
,
1
}
P
(
X
=
x
,
Y
=
y
)
log
2
P
(
Y
=
y
∣
X
=
x
)
P
(
Y
=
y
)
I(X; Y) = \sum_{x \in \{0, 1\}} \sum_{y \in \{0, 1\}} P(X = x, Y = y) \log_2 \frac{P(Y = y | X = x)}{P(Y = y)}
I(X;Y)=x∈{0,1}∑y∈{0,1}∑P(X=x,Y=y)log2P(Y=y)P(Y=y∣X=x)
6. 化简互信息公式
对互信息公式进行化简,结合前述概率关系,可得:
I
(
X
;
Y
)
=
∑
x
∈
{
0
,
1
}
P
(
X
=
x
)
∑
y
∈
{
0
,
1
}
P
(
Y
=
y
∣
X
=
x
)
log
2
P
(
Y
=
y
∣
X
=
x
)
P
(
Y
=
y
)
I(X; Y) = \sum_{x \in \{0, 1\}} P(X = x) \sum_{y \in \{0, 1\}} P(Y = y | X = x) \log_2 \frac{P(Y = y | X = x)}{P(Y = y)}
I(X;Y)=x∈{0,1}∑P(X=x)y∈{0,1}∑P(Y=y∣X=x)log2P(Y=y)P(Y=y∣X=x)
具体展开:
I
(
X
;
Y
)
=
p
0
[
(
1
−
p
)
log
2
1
−
p
P
(
Y
=
0
)
+
p
log
2
p
P
(
Y
=
1
)
]
+
p
1
[
p
log
2
p
P
(
Y
=
0
)
+
(
1
−
p
)
log
2
1
−
p
P
(
Y
=
1
)
]
I(X; Y) = p_0 \left[ (1 - p) \log_2 \frac{1 - p}{P(Y = 0)} + p \log_2 \frac{p}{P(Y = 1)} \right]+ p_1 \left[ p \log_2 \frac{p}{P(Y = 0)} + (1 - p) \log_2 \frac{1 - p}{P(Y = 1)} \right]
I(X;Y)=p0[(1−p)log2P(Y=0)1−p+plog2P(Y=1)p]+p1[plog2P(Y=0)p+(1−p)log2P(Y=1)1−p]
7. 最大化互信息
信道容量
C
C
C 是互信息的最大值:
C
=
max
p
0
I
(
X
;
Y
)
C = \max_{p_0} I(X; Y)
C=p0maxI(X;Y)
代入边缘概率
P
(
Y
)
P(Y)
P(Y) 和条件熵的关系,经过化简可以得到:
C
=
max
p
0
[
H
(
Z
)
−
H
(
p
)
]
C = \max_{p_0} [H(Z) - H(p)]
C=p0max[H(Z)−H(p)]
其中:
- H ( p ) = − p log 2 p − ( 1 − p ) log 2 ( 1 − p ) H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p) H(p)=−plog2p−(1−p)log2(1−p),为熵函数。
- Z = p 0 ( 1 − p ) + p 1 p Z = p_0 (1 - p) + p_1 p Z=p0(1−p)+p1p。
8. 结论:最大容量
为了最大化
C
C
C,令输入分布均匀,即
p
0
=
p
1
=
0.5
p_0 = p_1 = 0.5
p0=p1=0.5。此时:
Z
=
0.5
⋅
(
1
−
p
)
+
0.5
⋅
p
=
0.5
Z = 0.5 \cdot (1 - p) + 0.5 \cdot p = 0.5
Z=0.5⋅(1−p)+0.5⋅p=0.5
H
(
Z
)
=
H
(
0.5
)
=
1
H(Z) = H(0.5) = 1
H(Z)=H(0.5)=1
因此,信道容量为:
C
=
1
−
H
(
p
)
C = 1 - H(p)
C=1−H(p)
即:
C
=
1
+
p
log
2
p
+
(
1
−
p
)
log
2
(
1
−
p
)
C = 1 + p \log_2 p + (1 - p) \log_2 (1 - p)
C=1+plog2p+(1−p)log2(1−p)
总结
BSC 的信道容量 C = 1 − H ( p ) C = 1 - H(p) C=1−H(p) 是通过最大化输入输出的互信息得到的。它表明:
- 当翻转概率 p = 0 p = 0 p=0(无噪声)时, C = 1 C = 1 C=1 比特/符号。
- 当翻转概率 p = 0.5 p = 0.5 p=0.5(完全随机)时, C = 0 C = 0 C=0 比特/符号。