BSC 信道容量公式推导


1. 信道容量定义

信道容量 C C C 是输入和输出之间互信息 I ( X ; Y ) I(X; Y) I(X;Y) 的最大值:
C = max ⁡ P ( X ) I ( X ; Y ) C = \max_{P(X)} I(X; Y) C=P(X)maxI(X;Y)
互信息 I ( X ; Y ) I(X; Y) I(X;Y) 的公式为:
I ( X ; Y ) = H ( Y ) − H ( Y ∣ X ) I(X; Y) = H(Y) - H(Y|X) I(X;Y)=H(Y)H(YX)
其中:

  • H ( Y ) H(Y) H(Y) 是输出符号 Y Y Y 的熵,表示接收端的总信息量。
  • H ( Y ∣ X ) H(Y|X) H(YX) 是条件熵,表示信道的不确定性。

对于 二进制对称信道(BSC)

  • 输入 X X X { 0 , 1 } \{0, 1\} {0,1}
  • P ( X = 0 ) = p 0 , P ( X = 1 ) = p 1 P(X=0) = p_0, P(X=1) = p_1 P(X=0)=p0,P(X=1)=p1,且 p 1 = 1 − p 0 p_1 = 1 - p_0 p1=1p0
  • 信道翻转比特的概率为 p p p (即 P ( Y ≠ X ) = p P(Y \neq X) = p P(Y=X)=p)。

2. 条件概率

在这里插入图片描述

BSC 的条件概率定义如下:
P ( Y = 0 ∣ X = 0 ) = 1 − p , P ( Y = 1 ∣ X = 0 ) = p P(Y = 0 | X = 0) = 1 - p, \quad P(Y = 1 | X = 0) = p P(Y=0∣X=0)=1p,P(Y=1∣X=0)=p
P ( Y = 1 ∣ X = 1 ) = 1 − p , P ( Y = 0 ∣ X = 1 ) = p P(Y = 1 | X = 1) = 1 - p, \quad P(Y = 0 | X = 1) = p P(Y=1∣X=1)=1p,P(Y=0∣X=1)=p


3. 联合概率

联合概率 P ( X , Y ) P(X, Y) P(X,Y) 表示输入 X X X 和输出 Y Y Y 的联合分布:
P ( X = 0 , Y = 0 ) = P ( Y = 0 ∣ X = 0 ) ⋅ P ( X = 0 ) = p 0 ( 1 − p ) P(X = 0, Y = 0) = P(Y = 0 | X = 0) \cdot P(X = 0) = p_0 (1 - p) P(X=0,Y=0)=P(Y=0∣X=0)P(X=0)=p0(1p)
P ( X = 1 , Y = 1 ) = P ( Y = 1 ∣ X = 1 ) ⋅ P ( X = 1 ) = p 1 ( 1 − p ) P(X = 1, Y = 1) = P(Y = 1 | X = 1) \cdot P(X = 1) = p_1 (1 - p) P(X=1,Y=1)=P(Y=1∣X=1)P(X=1)=p1(1p)
P ( X = 0 , Y = 1 ) = P ( Y = 1 ∣ X = 0 ) ⋅ P ( X = 0 ) = p 0 p P(X = 0, Y = 1) = P(Y = 1 | X = 0) \cdot P(X = 0) = p_0 p P(X=0,Y=1)=P(Y=1∣X=0)P(X=0)=p0p
P ( X = 1 , Y = 0 ) = P ( Y = 0 ∣ X = 1 ) ⋅ P ( X = 1 ) = p 1 p P(X = 1, Y = 0) = P(Y = 0 | X = 1) \cdot P(X = 1) = p_1 p P(X=1,Y=0)=P(Y=0∣X=1)P(X=1)=p1p


4. 边缘概率

边缘概率 P ( Y ) P(Y) P(Y) 表示输出 Y Y Y 的分布:
P ( Y = 0 ) = P ( X = 0 , Y = 0 ) + P ( X = 1 , Y = 0 ) P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)
P ( Y = 0 ) = p 0 ( 1 − p ) + p 1 p P(Y = 0) = p_0 (1 - p) + p_1 p P(Y=0)=p0(1p)+p1p
P ( Y = 1 ) = P ( X = 0 , Y = 1 ) + P ( X = 1 , Y = 1 ) P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1) P(Y=1)=P(X=0,Y=1)+P(X=1,Y=1)
P ( Y = 1 ) = p 0 p + p 1 ( 1 − p ) P(Y = 1) = p_0 p + p_1 (1 - p) P(Y=1)=p0p+p1(1p)


5. 互信息的展开

互信息 I ( X ; Y ) I(X; Y) I(X;Y) 的公式可以写为:
I ( X ; Y ) = ∑ x ∈ { 0 , 1 } ∑ y ∈ { 0 , 1 } P ( X = x , Y = y ) log ⁡ 2 P ( X = x , Y = y ) P ( X = x ) P ( Y = y ) I(X; Y) = \sum_{x \in \{0, 1\}} \sum_{y \in \{0, 1\}} P(X = x, Y = y) \log_2 \frac{P(X = x, Y = y)}{P(X = x) P(Y = y)} I(X;Y)=x{0,1}y{0,1}P(X=x,Y=y)log2P(X=x)P(Y=y)P(X=x,Y=y)

将联合概率和边缘概率代入公式:
I ( X ; Y ) = ∑ x ∈ { 0 , 1 } ∑ y ∈ { 0 , 1 } P ( X = x , Y = y ) log ⁡ 2 P ( Y = y ∣ X = x ) P ( Y = y ) I(X; Y) = \sum_{x \in \{0, 1\}} \sum_{y \in \{0, 1\}} P(X = x, Y = y) \log_2 \frac{P(Y = y | X = x)}{P(Y = y)} I(X;Y)=x{0,1}y{0,1}P(X=x,Y=y)log2P(Y=y)P(Y=yX=x)


6. 化简互信息公式

对互信息公式进行化简,结合前述概率关系,可得:
I ( X ; Y ) = ∑ x ∈ { 0 , 1 } P ( X = x ) ∑ y ∈ { 0 , 1 } P ( Y = y ∣ X = x ) log ⁡ 2 P ( Y = y ∣ X = x ) P ( Y = y ) I(X; Y) = \sum_{x \in \{0, 1\}} P(X = x) \sum_{y \in \{0, 1\}} P(Y = y | X = x) \log_2 \frac{P(Y = y | X = x)}{P(Y = y)} I(X;Y)=x{0,1}P(X=x)y{0,1}P(Y=yX=x)log2P(Y=y)P(Y=yX=x)

具体展开:
I ( X ; Y ) = p 0 [ ( 1 − p ) log ⁡ 2 1 − p P ( Y = 0 ) + p log ⁡ 2 p P ( Y = 1 ) ] + p 1 [ p log ⁡ 2 p P ( Y = 0 ) + ( 1 − p ) log ⁡ 2 1 − p P ( Y = 1 ) ] I(X; Y) = p_0 \left[ (1 - p) \log_2 \frac{1 - p}{P(Y = 0)} + p \log_2 \frac{p}{P(Y = 1)} \right]+ p_1 \left[ p \log_2 \frac{p}{P(Y = 0)} + (1 - p) \log_2 \frac{1 - p}{P(Y = 1)} \right] I(X;Y)=p0[(1p)log2P(Y=0)1p+plog2P(Y=1)p]+p1[plog2P(Y=0)p+(1p)log2P(Y=1)1p]


7. 最大化互信息

信道容量 C C C 是互信息的最大值:
C = max ⁡ p 0 I ( X ; Y ) C = \max_{p_0} I(X; Y) C=p0maxI(X;Y)

代入边缘概率 P ( Y ) P(Y) P(Y) 和条件熵的关系,经过化简可以得到:
C = max ⁡ p 0 [ H ( Z ) − H ( p ) ] C = \max_{p_0} [H(Z) - H(p)] C=p0max[H(Z)H(p)]
其中:

  • H ( p ) = − p log ⁡ 2 p − ( 1 − p ) log ⁡ 2 ( 1 − p ) H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p) H(p)=plog2p(1p)log2(1p),为熵函数。
  • Z = p 0 ( 1 − p ) + p 1 p Z = p_0 (1 - p) + p_1 p Z=p0(1p)+p1p

8. 结论:最大容量

为了最大化 C C C,令输入分布均匀,即 p 0 = p 1 = 0.5 p_0 = p_1 = 0.5 p0=p1=0.5。此时:
Z = 0.5 ⋅ ( 1 − p ) + 0.5 ⋅ p = 0.5 Z = 0.5 \cdot (1 - p) + 0.5 \cdot p = 0.5 Z=0.5(1p)+0.5p=0.5
H ( Z ) = H ( 0.5 ) = 1 H(Z) = H(0.5) = 1 H(Z)=H(0.5)=1

因此,信道容量为:
C = 1 − H ( p ) C = 1 - H(p) C=1H(p)
即:
C = 1 + p log ⁡ 2 p + ( 1 − p ) log ⁡ 2 ( 1 − p ) C = 1 + p \log_2 p + (1 - p) \log_2 (1 - p) C=1+plog2p+(1p)log2(1p)


总结

BSC 的信道容量 C = 1 − H ( p ) C = 1 - H(p) C=1H(p) 是通过最大化输入输出的互信息得到的。它表明:

  • 当翻转概率 p = 0 p = 0 p=0(无噪声)时, C = 1 C = 1 C=1 比特/符号。
  • 当翻转概率 p = 0.5 p = 0.5 p=0.5(完全随机)时, C = 0 C = 0 C=0 比特/符号。
### 二元离散对称信道 (BSC) 的信道容量 #### 定义与特性 二元离散对称信道(Binary Symmetric Channel, BSC)是一种简单的通信信道模型,用于描述在传输过程中可能出现的比特翻转现象。在这个信道中,每个输入比特以固定的错误概率 \( p \) 被翻转为相反的比特[^2]。 #### 信道容量概念 信道容量表示信道能够无差错地传输信息的最大速率。对于BSC来说,信道容量仅取决于信道本身的统计特性,而不受发送端信号分布的影响[^1]。 #### 计算公式推导 给定一个具有错误概率 \( p \) 的BSC,其信道容量 \( C \) 可由下述公式给出: \[ C = 1 - H(p) \] 这里, - \( H(p) \) 表示二进制熵函数,定义如下: \[ H(p) = -p\log_2{p}-(1-p)\log_2{(1-p)} \] 此表达式衡量了由于噪声引入不确定性而导致的有效带宽损失程度[^4]。 #### MATLAB 实现示意 为了更直观地展示这一过程,下面是一段用于计算并绘制不同误码率下的BSC信道容量变化趋势的MATLAB代码片段: ```matlab % Define error probability range from 0 to 0.5 with small steps p_values = linspace(0, 0.5, 100); % Calculate channel capacity using the formula derived above capacity = 1 - (-p_values .* log2(p_values) - (1 - p_values) .* log2(1 - p_values)); % Plotting results figure; plot(p_values, capacity); xlabel('Error Probability p'); ylabel('Channel Capacity C(bit)'); title('Capacity of Binary Symmetric Channel vs Error Probability'); grid on; ``` 上述代码展示了如何利用MATLAB来模拟分析BSC信道性能随误码率的变化情况[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值