pycharts

导入图表类型

和其他库的导入方法一样,在绘图之前首先要在文件开头导入所需图表类型(练习代码中已经导入,无需再修改)。

from pyecharts.charts import Bar

Bar 类型是柱状图/条形图在 pyEcharts 中的英文名。 pyEcharts 中有很多常用的图表类型如:Pie(饼图) 、wordcloud(词云图)、Scatter(散点图)等等,我们将会在后边的实训中一一学习。

import 我们需要的图标类型后,要像面向对象中的实例化类一样声明图表:

bar = Bar()

添加数据

实例化图表之后便可以向图表中添加数据。 pyEcharts 中不同类型的图表添加数据的方法不尽相同,但基本原理是类似的,此处以 Bar 类型图表即条形图为例介绍添加数据的方法。

示例如下:

bar.add_xaxis(["Shirts", "Sweaters", "Ties", "Pants", "Windbreaker", "High-heels", "Socks"])
bar.add_yaxis("Merchant-A", [114, 55, 27, 101, 125, 27, 105])
bar.add_yaxis("Merchant-B", [57, 134, 137, 129, 145, 60, 49])

以上代码是向 bar 的 x 轴添加 6 种衣服类型,并向 y 轴分别添加商家 A 和商家 B 的两组销售数据,pyEcharts 会自动绘制每组两行的柱状图。

设置图表样式

有了数据,就可以设置我们需要的图标样式并添加一些额外的信息。 比如将 x 轴和 y 轴翻转:

bar.reversal_axis()

这一设置类型属于 Bar 图表自带类型。

将标签的位置设置为靠右显示:

bar.set_series_opts(label_opts=opts.LabelOpts(position="right"))

这一设置类型属于系列配置项(Series Option)。系列配置项还可以设置文字类型、图元类型等等。我们将会在后边的实训中做详细介绍。

将标题设置为“Bar-TestPicture”

bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar-TestPicture"))

标题的设置属于全局配置项(Global Option),具体各部分名称可参考下图:

,

输出图表

pyEcharts 有多种输出方式以格式,比如嵌入 Web 界面以 html 格式输出、嵌入 Jupyter 输出或者以文件的形式输出 PNG 格式的图片。在实训中我们采用输出 PNG 图片的形式:

make_snapshot(snapshot, bar_chart().render(), "StudentAnswer/student_answer.png")

链式调用

PyEcharts 支持链式调用,比如声明图表类型以及添加数据的部分可以写成如下格式:

bar = (
      Bar()
      .add_xaxis(["Shirts", "Sweaters", "Ties", "Pants", "Windbreaker", "High-heels", "Socks"])
      .add_yaxis("Merchant-A", [114, 55, 27, 101, 125, 27, 105])
      .add_yaxis("Merchant-B", [57, 134, 137, 129, 145, 60, 49])
)

### Pyecharts 数据可视化基础 Pyecharts 是一个基于 Python 的数据可视化工具,它封装了 ECharts 库的功能,使得开发者可以更方便地通过 Python 创建交互式的图表。以下是关于如何使用 Pyecharts 进行数据可视化的详细介绍。 #### 安装 Pyecharts 要开始使用 Pyecharts,首先需要安装该库。可以通过 pip 工具完成安装: ```bash pip install pyecharts ``` #### 基本用法 Pyecharts 提供了一系列用于绘制不同类型图表的类,这些类都继承自 `Chart` 类[^2]。下面是一些常见的图表及其对应的类名称: - 条形图 (Bar) - 折线图 (Line) - 饼状图 (Pie) - 散点图 (Scatter) 每种图表都可以通过配置选项来自定义样式和行为。 #### 示例代码:条形图 以下是一个简单的条形图示例,展示如何利用 Pyecharts 绘制基本图形: ```python from pyecharts.charts import Bar from pyecharts import options as opts # 准备数据 categories = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] values = [5, 20, 36, 10, 75, 90] # 初始化 Bar 图表对象 bar_chart = ( Bar() .add_xaxis(categories) # 添加 X 轴标签 .add_yaxis("销量", values) # 添加 Y 轴数据 .set_global_opts(title_opts=opts.TitleOpts(title="商品销售情况")) # 设置全局参数 ) # 渲染图表至 HTML 文件 bar_chart.render("basic_bar.html") ``` 上述代码会生成一个名为 `basic_bar.html` 的文件,在浏览器中打开即可查看渲染后的条形图。 #### 自定义配置项 除了默认设置外,还可以进一步调整图表外观和其他属性。例如修改颜色主题、添加动画效果等。具体方法可通过访问官方文档获取更多信息。 ### 注意事项 虽然 Pyecharts 功能强大且易上手,但在实际项目应用过程中需要注意版本兼容性和性能优化等问题[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值