对于一个特定的数据集,我们需要关注分类器的预测结果。我们应该从后往前看,先看分类器的预测结果是Positive(正样本)还是Negative(负样本)?如果分类器预测正样本,那么我们需要查看实际结果是否也是正样本,如果是,则说明分类器预测正确,否则说明分类器预测错误。如果分类器预测负样本,那么我们需要查看实际结果是否也是负样本,如果是,则说明分类器预测正确,否则说明分类器预测错误。
在分类器的预测结果中,我们还需要关注四个重要的指标:True Positive(TP)、False Positive(FP)、True Negative(TN)和False Negative(FN)。TP表示分类器预测结果为正样本,实际也为正样本,即正样本被正确识别的数量;FP表示分类器预测结果为正样本,实际为负样本,即误报的负样本数量;TN表示分类器预测结果为负样本,实际也为负样本,即负样本被正确识别的数量;FN表示分类器预测结果为负样本,实际为正样本,即漏报的正样本数量。
通过对这四个指标的分析,我们可以了解分类器的准确率、召回率、精确率和F1值等指标,从而评估分类器的性能。
具体代码如下:
将两张图像进行融合时,在不涉及透明度的情况下(设置透明会导致提取结果的白色变成灰色),会涉及到背景问题,存在FN色彩融不进去的现象,所以需要另写循环来对色彩进行调整。
# -*- encoding: utf-8 -*-
from PIL import Image
import cv2
import numpy as np
def visualize_errors(image_path, mask_path, prediction_path):
image = cv2.imread(image_path)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
prediction = cv2.imread(prediction_path, cv2.IMREAD_GRAYSCALE)
# 创建 FP 和 FN 的掩膜
fp_mask = np.zeros_like(mask)
fn_mask = np.zeros_like(mask)
# 判断每个像素的分类是否正确,并标记 FP 和 FN 区域
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
if mask[i, j] == 255 and prediction[i, j] != 255: # FN
fn_mask[i, j] = 255
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
if mask[i, j] == 0 and prediction[i, j] == 255: # FP
fp_mask[i, j] = 255
fn_visualized = np.stack((fn_mask, fn_mask, fn_mask), axis=2)
fp_visualized = np.stack((fp_mask, fp_mask, fp_mask), axis=2)
mask_3d_fp = np.all(fp_visualized == [255, 255, 255], axis=2)
fp_visualized[mask_3d_fp] = [255, 0, 0] # FP blue
result = cv2.add(fp_visualized, image)
for i in range(fn_visualized.shape[0]):
for j in range(fn_visualized.shape[1]):
if fn_visualized[i, j][0] == 255:
result[i, j] = [0, 0, 255] # FN red
cv2.imshow("result Image", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('fused_image.jpg', result)
if __name__ == '__main__':
# 图像=标签
image_path = "10007.png"
# 标签
mask_path = "10007.png"
# 预测 8位24位均可
prediction_path = "10007pre.png"
visualize_errors(image_path, mask_path, prediction_path)
运行结果图