多源遥感数据融合

多源数据融合的基本原理

数据采集与处理

1)采集的数据包括来自不同传感器或平台所采集的卫星遥感数据、航空遥感数据、激光雷达数据等。

2)数据预处理包括大气校正、几何校正、辐射校正等。

3)数据融合前的处理:对预处理后的遥感数据进行归一化、去噪、特征提取等处理。

数据融合方法

像元级融合、特征级融合、决策级融合等(包括基于统计学的方法、基于物理模型的方法、基于机器学习的方法等)

1)像元级融合通常包括基于加权平均法的融合、基于 PCA 分析的融合、基于 IHS 变换的融合等。

2)特征级融合通常包括基于特征变换的融合、基于特征提取的融合、基于神经网络的融合等。

3)决策级融合通常包括基于逻辑运算的融合、基于贝叶斯网络的融合、基于模糊集理论的融合等。

融合结果评价

1)定量评价:通过指标对结果进行量化和评估,指标包括灰度一致性、空间一致性、谱信息保留程度、信息增益等。

2)定性评价:定性评价 是通过对融合结果进行目视或主观判断,对其可信度和准确性进行评估。定性评价通常需 要借助领域专家或者地面实地观测数据进行对比,以确定融合结果的准确性和可信度。

遥感数据融合算法是一种将不同传感器的遥感数据进行综合利用的方法,以提高遥感数据的时空分辨率和监测精度。SSTARFM方法是一种常用的数据融合算法,它可以融合Sentinel2、Landsat8/9和MODIS等不同传感器的数据,从而提高监测精度。\[1\]\[2\] 国外遥感技术在数据融合算法方面已经有年的发展经验。他们通过建立广泛的地物波谱库,服务于地表覆盖的分类,并积累了大量的不同时期、角度、传感器的影像数据及样本。此外,国外还经常开质量优秀且标准化的遥感数据集,为研究者提供了开发和改进算法的基础。这些优质的数据集和丰富的经验为遥感数据融合算法的发展提供了支持。\[3\] #### 引用[.reference_title] - *1* *2* [数字中国·星火文集 | 基于时空滤波方法的遥感数据融合算法](https://blog.csdn.net/baidu_31160581/article/details/125280816)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [海量遥感数据智能分析展望](https://blog.csdn.net/u010329292/article/details/128881160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值