多源数据融合的基本原理
数据采集与处理
1)采集的数据包括来自不同传感器或平台所采集的卫星遥感数据、航空遥感数据、激光雷达数据等。
2)数据预处理包括大气校正、几何校正、辐射校正等。
3)数据融合前的处理:对预处理后的遥感数据进行归一化、去噪、特征提取等处理。
数据融合方法
像元级融合、特征级融合、决策级融合等(包括基于统计学的方法、基于物理模型的方法、基于机器学习的方法等)
1)像元级融合通常包括基于加权平均法的融合、基于 PCA 分析的融合、基于 IHS 变换的融合等。
2)特征级融合通常包括基于特征变换的融合、基于特征提取的融合、基于神经网络的融合等。
3)决策级融合通常包括基于逻辑运算的融合、基于贝叶斯网络的融合、基于模糊集理论的融合等。
融合结果评价
1)定量评价:通过指标对结果进行量化和评估,指标包括灰度一致性、空间一致性、谱信息保留程度、信息增益等。
2)定性评价:定性评价 是通过对融合结果进行目视或主观判断,对其可信度和准确性进行评估。定性评价通常需 要借助领域专家或者地面实地观测数据进行对比,以确定融合结果的准确性和可信度。