重要性采样

重要性采样

前言

离散型随机变量 X X X,我们可以通过以下方法求取其期望:

  1. 直接计算法,需要知道概率分布:
    E ( X ) = ∑ x ∈ X [ p ( x ) ⋅ x ] \mathbb{E}(X)=\sum_{x\in X}\left[p(x)\cdot x\right] E(X)=xX[p(x)x]

  2. 采样计算,这时即使 X X X概率分布未知,依据大数定律,当采样次数够大时,仍然可以求取期望
    E ( X ) = 1 n lim ⁡ n → + ∞ ∑ i = 0 n − 1 x i \mathbb{E}(X)=\frac{1}{n}\lim_{n\to +\infty}\sum_{i=0}^{n-1} x_i E(X)=n1n+limi=0n1xi

连续型随机变量 X X X

  1. 直接计算,需要 f f f表达式

E ( X ) = ∫ x x ⋅ f ( x ) d x \mathbb{E}(X)=\int_x x\cdot f(x)dx E(X)=xxf(x)dx

  1. 抽样(蒙特卡洛积分估计),这里不多做介绍
重要性采样

思想:如果已知随机变量 X ∼ p 0 X\sim p_0 Xp0,在 p 0 p_0 p0下随机采样了一批数据 { x i } ∼ p 0 \{x_i\}\sim p_0 {xi}p0,现在要求随机变量 X ∼ p 1 X\sim p_1 Xp1下的期望,则:
E X ∼ p 1 [ X ] = ∑ x p 1 ( x ) ⋅ x = ∑ x p 0 ( x ) p 1 ( x ) p 0 ( x ) ⋅ x = E X ∼ p 0 [ f ( X ) ] \mathbb{E}_{X\sim p_1}[X]=\sum_x p_1(x)\cdot x=\sum_x p_0(x) \frac{p_1(x)}{p_0(x)}\cdot x=\mathbb{E}_{X\sim p_0}[f(X)] EXp1[X]=xp1(x)x=xp0(x)p0(x)p1(x)x=EXp0[f(X)]
那么就有如下几个问题:

  1. 对于离散型随机变量,为什么 p 1 ( x ) p_1(x) p1(x)已知,不直接计算期望呢?

    • 因为有时候我们已经根据 p 0 p_0 p0采样了一些数据,再用 p 1 p_1 p1重新采样计算一遍,会增加很多计算量。
    • 因为有些时候不方便对 p 1 p_1 p1采样
    • 在强化学习中,我们根据一个策略采样,通过重要性采样可以求出另一个策略的期望,是一种On Policy向Off Policy转换的思想。
  2. 对于连续型随机变量,为什么 p 1 ( x ) p_1(x) p1(x)已知,不直接计算期望呢?

    理论上不可能完全求出概率密度函数,所以无法从理论上计算期望,只能估计。

    例如,如果我们通过神经网络来表示 f f f,那么对任意的输入 x x x,我们都可以求出 f ( x ) f(x) f(x),但是这并不代表我们求出 f f f的函数表达式,更无法进一步求积分。我们只是能从数值上计算出 f ( x ) f(x) f(x),神经网络本身就是一个黑盒。

综上所述,重要性采样使得我们能够从behavior policy采样,然后去估计target policy的期望,从而使得On Policy的算法转换为Off Policy

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值