【scipy.sparse】diags()和dia_matrix()的区别
文章目录
1. 介绍
经常遇到sp.diags() 和 sp.dia_matrix()
, 还傻傻分不清楚。
- sp.diags() 是对角的元素,这个对角的元素有三个,每一个都是一个列表形式,它的用途要比sp.dia_matrix()的多,具体的一会儿看例子。
- sp.dia_matrix通过两个数组确定: data和offsets。其中data对角线元素的值;offsets:第i个offsets是当前第i个对角线和主对角线的距离。data[k:]存储了offsets[k]对应的对角线的全部元素。
2. 代码示例
2.1 sp.diags()
2.1.1 第一种用法(data+offsets)
- 第一个参数的第一个元素是[1,2,3,4],对应的第2个参数的数是0(相当于主对角线偏移为0,其实就是主对角线),所以1,2,3,4放在主对角线位置。
- 第1个参数的第2个元素是[1,2,3],对应的第2个参数的数是-1,所以1,2,3放在主对角线靠下偏1的对角线位置。
- 第1个参数的第三个元素是[1,2],对应的第2个参数的数是2,所以1,2放在主对角线靠上偏2的对角线位置。
- 其余地方补0就好。因为对角矩阵肯定是个方阵,所以就最后就是4*4的方阵。
>>> data = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
# 使用diags函数,该函数的第二个变量为对角矩阵的偏移量,
0:代表不偏移,就是(0,0)(1,1)(2,2)(3,3)...这样的方式写
k:正数:代表像正对角线的斜上方偏移k个单位的那一列对角线上的元素。
-k:负数,代表向正对角线的斜下方便宜k个单位的那一列对角线上的元素,
>>> diags(data, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],
[1, 2, 0, 2],
[0, 2, 3, 0],
[0, 0, 3, 4]])
2.1.2 广播(需要指定shape)
# 这种情况可以广播(其实就是每个对角线的元素是相同的),但需要指定矩阵大小。
>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2., 1., 0., 0.],
[ 1., -2., 1., 0.],
[ 0., 1., -2., 1.],
[ 0., 0., 1., -2.]])
2.1.3 只有一条对角线
# 指定offset为1
>>> diags([1, 2, 3], 1).toarray()
array([[ 0., 1., 0., 0.],
[ 0., 0., 2., 0.],
[ 0., 0., 0., 3.],
[ 0., 0., 0., 0.]])
# 不指定offsets的话,默认为0
>>> diags([1, 2, 3, 4]).toarray()
array([[ 1., 0., 0., 0.],
[ 0., 2., 0., 0.],
[ 0., 0., 3., 0.],
[ 0., 0., 0., 4.]])
2.2 sp.dia_matrix()
sp.dia_matrix()的用法比较单一。注意:与sp.diags()记混则会出现错误的结果。
2.2.1 典型用法(与sp.diags()的这种用法相同、看上面2.1.1)
>>> data = np.array([[1, 2, 3, 4], [5, 6, 0, 0], [0, 7, 8, 9]])
>>> offsets = np.array([0, -2, 1])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 7, 0, 0],
[0, 2, 8, 0],
[5, 0, 3, 9],
[0, 6, 0, 4]])
2.2.2 可能会混淆的用法
# 注意这种用法不会产生如2.1.3的情况,而是出现下面的结果:
>>> dia_matrix([1,2,3]).toarray()
array([[1, 2, 3]])
对于sp.dia_matrix(),其他的用法,则会报错。