【scipy.sparse】diags()和dia_matrix()的区别

文章介绍了scipy.sparse模块中diags()和dia_matrix()函数的区别。diags()可以创建具有多个对角线的稀疏矩阵,支持广播机制,而dia_matrix()主要用于构建特定数据和偏移量的对角矩阵。diags()功能更强大,dia_matrix()用法相对单一,误用可能导致错误结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【scipy.sparse】diags()和dia_matrix()的区别


1. 介绍

经常遇到sp.diags() 和 sp.dia_matrix(), 还傻傻分不清楚。

  • sp.diags() 是对角的元素,这个对角的元素有三个,每一个都是一个列表形式,它的用途要比sp.dia_matrix()的多,具体的一会儿看例子。
  • sp.dia_matrix通过两个数组确定: data和offsets。其中data对角线元素的值;offsets:第i个offsets是当前第i个对角线和主对角线的距离。data[k:]存储了offsets[k]对应的对角线的全部元素。

2. 代码示例

2.1 sp.diags()

2.1.1 第一种用法(data+offsets)
  • 第一个参数的第一个元素是[1,2,3,4],对应的第2个参数的数是0(相当于主对角线偏移为0,其实就是主对角线),所以1,2,3,4放在主对角线位置。
  • 第1个参数的第2个元素是[1,2,3],对应的第2个参数的数是-1,所以1,2,3放在主对角线靠下偏1的对角线位置。
  • 第1个参数的第三个元素是[1,2],对应的第2个参数的数是2,所以1,2放在主对角线靠上偏2的对角线位置。
  • 其余地方补0就好。因为对角矩阵肯定是个方阵,所以就最后就是4*4的方阵。
>>> data = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]  
# 使用diags函数,该函数的第二个变量为对角矩阵的偏移量,
0:代表不偏移,就是(0,0)(11)(22)(33)...这样的方式写
k:正数:代表像正对角线的斜上方偏移k个单位的那一列对角线上的元素。
-k:负数,代表向正对角线的斜下方便宜k个单位的那一列对角线上的元素,

>>> diags(data, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],
       [1, 2, 0, 2],
       [0, 2, 3, 0],
       [0, 0, 3, 4]])
2.1.2 广播(需要指定shape)
# 这种情况可以广播(其实就是每个对角线的元素是相同的),但需要指定矩阵大小。

>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2.,  1.,  0.,  0.],
       [ 1., -2.,  1.,  0.],
       [ 0.,  1., -2.,  1.],
       [ 0.,  0.,  1., -2.]])
2.1.3 只有一条对角线
# 指定offset为1
>>> diags([1, 2, 3], 1).toarray()
array([[ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  2.,  0.],
       [ 0.,  0.,  0.,  3.],
       [ 0.,  0.,  0.,  0.]])

# 不指定offsets的话,默认为0
>>> diags([1, 2, 3, 4]).toarray()
array([[ 1.,  0.,  0.,  0.],
       [ 0.,  2.,  0.,  0.],
       [ 0.,  0.,  3.,  0.],
       [ 0.,  0.,  0.,  4.]])

2.2 sp.dia_matrix()

sp.dia_matrix()的用法比较单一。注意:与sp.diags()记混则会出现错误的结果。

2.2.1 典型用法(与sp.diags()的这种用法相同、看上面2.1.1)
>>> data = np.array([[1, 2, 3, 4], [5, 6, 0, 0], [0, 7, 8, 9]])
>>> offsets = np.array([0, -2, 1])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 7, 0, 0],
       [0, 2, 8, 0],
       [5, 0, 3, 9],
       [0, 6, 0, 4]])
2.2.2 可能会混淆的用法
# 注意这种用法不会产生如2.1.3的情况,而是出现下面的结果:
>>> dia_matrix([1,2,3]).toarray()
array([[1, 2, 3]])

对于sp.dia_matrix(),其他的用法,则会报错。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋冬无暖阳°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值