【推荐系统】推荐算法:冷启动-召回-粗排-精排-重排 解读
1. 介绍
目前工业界的推荐系统没有办法一次性对所有的候选item(量级上亿)去做预估,因此需要通过不同环节去处理庞大的候选池。每一层都是各司其职,冷启动决定用户初始体验,召回决定天花板,粗排为了性能效率,精排决定最终推荐精度、重排可以提升用户的多样性体验。目前市面上比较成熟的推荐系统分为:冷启动、召回、粗排、精排、重排五个阶段,
- 冷启动 相对而言很多时候是自成体系的,其主要起到的作用有两方面,
- 第一是item冷启动,即让新入库的item得到足够曝光,从而让一些新的高质量item能够迅速蹿起,从而快速下发给用户,满足用户的兴趣和需求。
- 第二是user冷启动,即新来了一个用户,怎么才能迅速找到用户的兴趣点,推送给用户感兴趣的内容,让用户留存下来,增强用户的粘性,从而让新用户转化为忠实用户。