【推荐系统】推荐算法:冷启动-召回-粗排-精排-重排 解读

本文深入解析推荐系统中的各个环节,包括冷启动(用户和物品冷启动)、召回策略、粗排算法、精排模型以及重排策略。冷启动通过用户注册信息、好物推荐、社交网络等方式解决新用户和物品的推荐问题。召回阶段主要任务是从海量物品中筛选出用户可能感兴趣的物品。粗排和精排则进一步提升推荐的准确性和效率。重排阶段通过调权、强插、过滤等手段优化用户多样性体验。整个推荐系统层层递进,旨在提供精准且多样化的推荐服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【推荐系统】推荐算法:冷启动-召回-粗排-精排-重排 解读



在这里插入图片描述

1. 介绍

目前工业界的推荐系统没有办法一次性对所有的候选item(量级上亿)去做预估,因此需要通过不同环节去处理庞大的候选池。每一层都是各司其职,冷启动决定用户初始体验,召回决定天花板,粗排为了性能效率,精排决定最终推荐精度、重排可以提升用户的多样性体验。目前市面上比较成熟的推荐系统分为:冷启动、召回、粗排、精排、重排五个阶段,

  • 冷启动 相对而言很多时候是自成体系的,其主要起到的作用有两方面,
    • 第一是item冷启动,即让新入库的item得到足够曝光,从而让一些新的高质量item能够迅速蹿起,从而快速下发给用户,满足用户的兴趣和需求。
    • 第二是user冷启动,即新来了一个用户,怎么才能迅速找到用户的兴趣点,推送给用户感兴趣的内容,让用户留存下来,增强用户的粘性,从而让新用户转化为忠实用户。
    </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋冬无暖阳°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值