BP-3-3 Examples of Iteration

Chapter 03 Control Flow

4.5 Examples of Iteration

The problems below might be easy, so try your best to make your solution easier and simpler.

Fibonacci
#include <iostream>
using namespace std;
int main(){
    int n;
    cin >> n;
    int fib_1 = 1, fib_2 = 2; //the first two fibonacci number
    for (int i = 3; i <= n; i++){
        int temp = fib_1 + fib_2; //compute the next fibonacci number
        fib_1 = fib_2; //remember last fibonacci number;
        fib_2 = temp; //remember the new fibonacci number;
    }
    cout << "The " << n << "th fibonacci number is: " << fib_2 << "." << endl;
    return 0;
}

The body for the iteration can also be written like this:

fib_2 = fib_1 + fib_2;
fib_1 = fib_2 - fib_1;
Newton’s Iteration Method For Cubic Root of ‘a’
#include <iostream>
#include <cmath>
using namespace std;
int main(){
    const double EPS = 1e-6; //EPS means epsilon, which is a very small number.
    double a, x1, x2; //x1, x2 is used to store x(n) and x(n+1)
    cout << "Please input a number: ";
    cin >> a;
    x2 = a; //the first number is a
    do{
      x1 = x2; //remember the previous number
      x2 = (2 * x1 + a / (x1 * x1)) / 3; //compute the new number
    } while (fabs(x1 - x2) >= EPS);
    cout << a << "'s cubic rooy is " << x2 << " ." << endl; 
    return 0;    
}
Output All the Prime Numbers No Larger Than ‘n’
#include <iostream>
#include <cmath>
using namespace std;
int main(){
    int n, count = 1;
    cin >> n; //input a number from the keyboard
    if (n <= 2) return -1;
    cout << 2 << ", "; //cout the first prime number
    
    for (int i = 3; i <= n; i += 2) { //even number can't be prime number, so we just need to test the odd numbers.
        int j = 2, k = (int)sqrt((double)i); //we don't need to test every number less than i, try everything to make the steps less
        while (j <= k && i % j != 0) j++; 
        if (j > k) {
            cout << i << ", ";
            count ++;
            if (count % 6 == 0) cout << endl; //make sure each line have 6 numbers
        }
    }
    cout << endl;
    return 0;
}
Sum 1 + x + x^2/2! + x^3/3! + x^4/4! + … + x^n/n!
#include <iostream>
using namespace std;
int main(){
    double x;
    int n;
    cin >> x >> n;
    double item = x, //item is used to store each item of the series 
    	   sum = 1 + x; //sum stores the sum, initialized as the summation od the first two items
    for (int i = 2; i < n; i++){ //compute each item and add them to the sum
        item *= x / i; //compute the next item
//inatead of compute the factorial and power separately, using recursion is more convenient
        sum += item;
    }
    cout << "x = " << x << ", n = " << n << ", sum = " << sum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值