第二章 随机变量及其分布

2.1 一维随机变量分布函数公式 重要程度:四星

分布函数的定义和性质随机变量的定义

样本空间 Ω \Omega Ω上的实值单值函数 X = X ( ω ) , ω ∈ Ω X=X(\omega),\omega\in\Omega X=X(ω),ωΩ, 通常用 X , Y , Z {X}, {Y},{Z} X,Y,Z表示。

累积分布函数(英语:cumulative distribution function,CDF)或概率分布函数,简称分布函数,是概率密度函数的积分,能完整描述一个实随机变量 X X X 的概率分布。

分布函数的定义

F ( x ) = P { X ≤ x } , x ∈ ( − ∞ , + ∞ ) \color{red}F (x) = P \left \{ X \leq x \right \} , x\in (-\infty, +\infty) F(x)=P{Xx},x(,+)

分布函数的性质

  1. 非负性: 0 ≤ F ( x ) ≤ 1. 0 \leq F (x) \leq 1. 0F(x)1.
  2. 规范性: F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 F (-\infty) = \lim _{x\to -\infty}F (x) = 0 F()=limxF(x)=0, F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1. F(+\infty)=\lim_{x\to+\infty}F(x)=1. F(+)=limx+F(x)=1.
  3. 单调不减性: 对于任意 x 1 < x 2 x_1<x_2 x1<x2, 有 F ( x 1 ) ≤ F ( x 2 ) F(x_1)\leq F(x_2) F(x1)F(x2).
  4. 右连续性: 对于任意实数 x 0 x_0 x0, 有 F ( x 0 ) = lim ⁡ x → x 0 + F ( x ) = F ( x 0 + 0 ) F (x_0) = \lim _{x \to x_0^+ }F(x) = F(x_0+ 0) F(x0)=limxx0+F(x)=F(x0+0)

例题
F ( x ) F(x) F(x) G ( x ) G(x) G(x)都是分布函数,则下列各个函数中可以作为随机变量的分布函数的是( )

A. F ( x ) G ( x ) F(x)G(x) F(x)G(x)

B. 2 F ( x ) − G ( x ) 2F (x) - G (x) 2F(x)G(x)

C. 0.3 F ( x ) + 0.7 G ( x ) 0.3F(x) + 0.7G(x) 0.3F(x)+0.7G(x)

D. 1 − F ( − x ) 1-F(-x) 1F(x)

解析

  • 选项A,规范性不满足, F ( + ∞ ) + G ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) + lim ⁡ x → + ∞ G ( x ) = 1 + 1 = 2 ; F (+\infty) + G (+\infty) = \lim _{x \to +\infty}F (x) + \lim _{x \to +\infty}G(x) = 1+ 1= 2; F(+)+G(+)=limx+F(x)+limx+G(x)=1+1=2;
  • 选项B,单调不减性不满足;
  • 选项D,右连续性不满足;
  • 故选C.

利用分布函数求概率

已知随机变量X的分布函数为 F ( x ) F(x) F(x), 则有:
1. P { X ≤ a } = F ( a ) P\{X \leq a\} = F(a) P{Xa}=F(a);
2. P { X > a } = 1 − P { X ≤ a } = 1 − F ( a ) P\{X > a\} = 1 - P\{X \leq a\} = 1 - F(a) P{X>a}=1P{Xa}=1F(a);
3. P { X < a } = F ( a − 0 ) = lim ⁡ x → a − F ( x ) \color{red}P\{X < a\} = F(a-0) = \lim_{x \to a^-}F(x) P{X<a}=F(a0)=limxaF(x) 左极限;
4. P { X = a } = P { X ≤ a } − P { X < a } = F ( a ) − F ( a − 0 ) P\{X = a\} = P\{X \leq a\} - P\{X < a\} = F(a) - F(a-0) P{X=a}=P{Xa}P{X<a}=F(a)F(a0).

例题
设随机变量X的分布函数为
F ( x ) = { 0 , x ≤ 0 , A − e − 2 x , 0 < x < 2 , 1 , 2 ≤ x , F(x) = \begin{cases} 0, & x \leq 0, \\ A - e^{-2x}, & 0 < x < 2, \\ 1, & 2 \leq x, \end{cases} F(x)= 0,Ae2x,1,x0,0<x<2,2x,
求参数A,并求概率 P { X = 2 } P\{X = 2\} P{X=2}

解析
F ( x ) F(x) F(x) 是X的分布函数,则在任何一点均右连续,即
lim ⁡ x → 0 + F ( x ) = F ( 0 ) , \lim_{x \to 0^+} F(x) = F(0), x0+limF(x)=F(0),
lim ⁡ x → 0 + ( A − e − 2 x ) = F ( 0 ) = 0 \lim_{x \to 0^+} (A - e^{-2x}) = F(0) = 0 limx0+(Ae2x)=F(0)=0, 所以 A = 1 A = 1 A=1

则有 P { X = 2 } = P { X ≤ 2 } − P { X < 2 } = F ( 2 ) − lim ⁡ x → 2 − F ( x ) = 1 − ( 1 − e − 2 × 2 ) = e − 4 P\{X = 2\} = P\{X \leq 2\} - P\{X < 2\} = F(2) - \lim_{x \to 2^-} F(x) = 1 - (1 - e^{-2 \times 2}) = e^{-4} P{X=2}=P{X2}P{X<2}=F(2)limx2F(x)=1(1e2×2)=e4.

2.2 离散型随机变量的概率分布公式 重要程度:四星

离散型随机变量的概率分布函数

X x 1 x 2 … x n … p i p 1 p 2 … p n … 则 X 的分布函数为 F ( x ) = P { X ≤ x } = ∑ x i ≤ x P { X = x i } = ∑ x i ≤ x p i \begin{gathered} \begin{array}{c|cccccc}X&x_1&x_2&\ldots&x_n&\ldots\\\hline p_i&p_1&p_2&\ldots&p_n&\ldots\end{array} \\ \text{则 X 的分布函数为} \\ F(x)=P\{X\leq x\}=\sum_{x_i\leq x}P\{X=x_i\}=\sum_{x_i\leq x}p_i \end{gathered} Xpix1p1x2p2xnpn X 的分布函数为F(x)=P{Xx}=xixP{X=xi}=xixpi

即,当 x < x 1 时, F ( x ) = 0 , 当  x 1 ≤ x < x 2  时 , F ( x ) = p 1 , 当  x 2 ≤ x < x 3  时, F ( x ) = p 1 + p 2 , 当 x n − 1 ≤ x < x n 时, F ( x ) = p 1 + p 2 + ⋯ + p n − 1 , ⋯ \begin{aligned} &\text{即,当}\quad x<x_1\quad\text{时,}F(x)=0, \\ &\text{当 }x_1\leq x<x_2\text{ 时},\quad F(x)=p_1, \\ &\text{当 }x_2\leq x<x_3\text{ 时,}F(x)=p_1+p_2, \\ &\text{当}x_{n-1}\leq x<x_n\text{时,}F(x)=p_1+p_2+\cdots+p_{n-1},\cdots \end{aligned} ,x<x1,F(x)=0, x1x<x2 ,F(x)=p1, x2x<x3 ,F(x)=p1+p2,xn1x<xn,F(x)=p1+p2++pn1,

定义:如果一个随机变量仅可能取得有限个或可数无穷多个数值,并且所有的数可按一定的顺序排列,则称该随机变量为离散型随机变量.
离散型随机变量X的概率分布,即随机变量X的所有可能取值以及取得该值的概率。性质如下:
1. p k ≥ 0 p_k \geq 0 pk0 ( k = 1 , 2 , ⋯ k = 1, 2, \cdots k=1,2,) (概率分布的非负性);
2. ∑ k = 1 ∞ p k = 1 \sum_{k = 1}^{\infty} p_k = 1 k=1pk=1 (概率分布的规范性)。

例题
设随机变量X的概率分布为 P { X = k } = a λ k k ! P\{X= k\} = a\frac{\lambda^k}{k!} P{X=k}=ak!λk, 其中 k = 0 , 1 , 2 , ⋯ k= 0, 1, 2, \cdots k=0,1,2,, λ > 0 \lambda > 0 λ>0 为常数,求常数a.

【解析】
1 = ∑ k = 0 ∞ P ( X = k ) = a ∑ k = 0 ∞ λ k k ! = a e λ , 1 = \sum_{k=0}^\infty P(X=k) = a\sum_{k=0}^\infty \frac{\lambda^k}{k!} = ae^\lambda, 1=k=0P(X=k)=ak=0k!λk=aeλ,
解得 a = e − λ a = e^{-\lambda} a=eλ.

常见离散型随机变量的分布

0-1分布

X X X01
P P P 1 − p 1-p 1p p p p

其中 0 < p < 1 0 < p < 1 0<p<1.

0-1 分布 可看为特殊的二项分布,只进行一次实验或不考虑次数,即 n = 1 n = 1 n=1; 所以 期望为 p p p , 方差为 1 − p 1-p 1p;

二项分布

X ∼ B ( n , p ) {X} \sim {B}(n, p) XB(n,p) 设事件A在任意一次试验中出现的概率都是p ( 0 < p < 1 ) (0 < p < 1) (0<p<1). X \mathbb{X} X 表示n重伯努利试验中事件A发生的次数,则X的所有可能取值为 0 , 1 , 2 , ⋯   , n 0, 1, 2, \cdots, n 0,1,2,,n,且相应的概率为
P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n . P\{X = k\} = C_n^k p^k (1-p)^{n-k}, \quad k = 0, 1, \cdots, n. P{X=k}=Cnkpk(1p)nk,k=0,1,,n.

二项分布的图形特点

二项分布的图形特点
对于固定 n n n p p p, 当 k k k 增加时,概率 P { X = k } P\{X=k\} P{X=k} 先是随之增加直至达到最大,随后单调减少。

例题

一张考卷上有5道选择题,每道题列出4个可能答案,其中只有一个答案是正确的。某学生靠猜测至少能答对4道题的概率是多少?

解析

每答一道题相当于做一次伯努利试验,
X X X:该学生靠猜测能答对的题数

P { P\{ P{至少能答对4道题 } = P { X ≥ 4 } \} = P\{ X\geq 4\} }=P{X4} = P { X = 4 } + P { X = 5 } = C 5 4 ( 1 4 ) 4 ⋅ 3 4 + ( 1 4 ) 5 = 1 64 =P\{X=4\}+P\{X=5\}=C_5^4\left(\frac14\right)^4\cdot\frac34+\left(\frac14\right)^5=\frac1{64} =P{X=4}+P{X=5}=C54(41)443+(41)5=641

几何分布

X ∼ G ( p ) \mathrm{X} \sim \mathrm{G}(p) XG(p) 若X的概率分布为 P { X = k } = ( 1 − p ) k − 1 p P\{X=k\} = (1-p)^{k-1}p P{X=k}=(1p)k1p, ( 0 < p < 1 ) (0 < p < 1) (0<p<1), k = 1 , 2 , ⋯ k = 1, 2, \cdots k=1,2,, 则称X服从参数为p的几何分布,记为 X ∼ G ( p ) X \sim G(p) XG(p).

几何分布(Geometric Distribution)是离散概率分布的一种,主要用于描述在一系列伯努利试验(Bernoulli trials)中,获取首次成功所需要的试验次数。伯努利试验是指那些只有两种可能结果(通常为“成功”和“失败”)的随机试验。

几何分布的概率质量函数(Probability Mass Function, PMF)

对于几何分布,其概率质量函数(PMF)定义为:

P ( X = k ) = ( 1 − p ) k − 1 ⋅ p \color{red}P(X = k) = (1 - p)^{k-1} \cdot p P(X=k)=(1p)k1p

其中:

  • P ( X = k ) P(X = k) P(X=k) 是第 k k k 次试验首次获得成功的概率。
  • p p p 是每次试验中成功的概率。
  • k k k 是试验的次数, k = 1 , 2 , 3 , … k = 1, 2, 3, \ldots k=1,2,3,
几何分布的期望和方差

几何分布的期望(Expected Value)和方差(Variance)如下:

  • 期望(Expected Value)
    E ( X ) = 1 p E(X) = \frac{1}{p} E(X)=p1

  • 方差(Variance)
    V a r ( X ) = 1 − p p 2 Var(X) = \frac{1 - p}{p^2} Var(X)=p21p

几何分布的图像

图像如下:黄色曲线为PDF, 橙色为CDF。p = 0.6

几何分布的图像展示了试验次数与首次成功概率之间的关系。以下是几何分布图像的一些关键特征:

  1. 单调递减(Monotonically Decreasing)

    • 图像随着试验次数增加而递减。
    • 每次成功概率 p p p 保持不变,但连续失败的概率随试验次数增加。
  2. 离散分布(Discrete Distribution)

    • 由于几何分布是离散概率分布,图像由一系列分离的点表示,每个点对应一个特定的试验次数。
  3. 依赖于成功概率 p p p

    • 成功概率 p p p 越高,图像的递减速度越快。
    • p p p 较低时,图像在较高的试验次数下依然有相对较大的概率值。
  4. 无负值(No Negative Values)

    • 几何分布的概率值始终是非负的。

泊松分布

X ∼ P ( λ ) \sim P(\lambda) P(λ) 设随机变量X的概率分布为 P { X = k } = λ k e − λ k ! P\{X=k\} = \frac{\lambda^k e^{-\lambda}}{k!} P{X=k}=k!λkeλ ( λ > 0 ) (\lambda > 0) (λ>0), k = 0 , 1 , 2 , ⋯ k = 0, 1, 2, \cdots k=0,1,2,, 则称X服从参数为 λ \lambda λ 的泊松分布,记为 X ∼ P ( λ ) X \sim P(\lambda) XP(λ)

在一定条件下,泊松分布可以看作为二项分布的极限形式,泊松分布适用于事件发生次数的计数,特别是在观测时间或区域较大,事件发生的概率较小的情况

定义

随机变量X所有可能取值为 0 , 1 , 2 , … 0,1,2,\ldots 0,1,2,, 取各个值的概率
P { X = k } = λ k e − λ k ! P\{X=k\} = \frac{\lambda^k e^{-\lambda}}{k!} P{X=k}=k!λkeλ ( λ > 0 ) (\lambda > 0) (λ>0), k = 0 , 1 , 2 , ⋯ k = 0, 1, 2, \cdots k=0,1,2,, 其中 λ > 0 \lambda>0 λ>0 是常数,则称X服从参数为入的泊松分布,记为 X ∼ P ( λ ) X \sim P(\lambda) XP(λ).

性质

( 1 ) P { X = k } ≥ 0. (1)P\{X=k\}\geq0. (1)P{X=k}0.

( 2 ) ∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ λ k e − λ k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ e λ = 1 (2)\sum_{k=0}^{\infty}P\{X=k\}=\sum_{k=0}^{\infty}\frac{\lambda^ke^{-\lambda}}{k!}=e^{-\lambda}\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}=e^{-\lambda}e^{\lambda}=1 (2)k=0P{X=k}=k=0k!λkeλ=eλk=0k!λk=eλeλ=1

泊松定理:设 λ > 0 \lambda > 0 λ>0 是一个常数,n是任意正整数,设 65 y t t t t t t t t t t t t t t t t t t " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " n p n = λ \color{red}65ytttttttttttttttttt"""""""""""""""""""""""""""""""""""""""""""""""""""""np_n = \lambda 65ytttttttttttttttttt"""""""""""""""""""""""""""""""""""""""""""""""""""""npn=λ,则对于任一固定的非负整数k,有
lim ⁡ n → ∞ C n k p n k ( 1 − p n ) n − k = λ k k ! e − λ . \color{red}\lim_{n \to \infty} C_n^k p_n^k (1 - p_n)^{n - k} = \frac{\lambda^k}{k!}e^{-\lambda}. nlimCnkpnk(1pn)nk=k!λkeλ.

当试验次数 n 非常大,而每次试验成功的概率 p 非常小,且 np 保持为一个固定的值 λ 时,二项分布可以近似为泊松分布。在这种情况下,λ=np,二项分布的概率质量函数可以近似为泊松分布的概率质量函数。

例题

保险公司为了估计企业的利润,需要计算投保尺程二年内死亡若干人的概率。设某保险公司的某人寿保险险种有1000人投保,每个人一年内死亡的概率为0.005, 试求在未来一年中在这些投保人中死亡人数不超过10人的概率.

解析

解 对每个人而言,在未来一年是否死亡相当于做一
次伯努利试验,1000人就是做1000重伯努利试验, 因此 X~B(1000,0.005), 由泊松定理

X ∼ ˙ P ( 5 ) X\dot{\sim}P(5) X˙P(5) P { X ≤ 10 } ≈ ∑ k = 0 10 e − 5 5 k k ! = 0.9862 P\{X\leq10\}\approx\sum_{k=0}^{10}\frac{e^{-5}5^k}{k!}=0.9862 P{X10}k=010k!e55k=0.9862

超几何分布 H(N, M, n)

设随机变量X的概率分布为 P { X = k } = C M k C N − M n − k C N n P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} P{X=k}=CNnCMkCNMnk, k = 0 , 1 , 2 , ⋯   , min ⁡ ( M , n ) k = 0, 1, 2, \cdots, \min(M, n) k=0,1,2,,min(M,n), 其中 M, N, n 都是正整数,则称X服从参数为 N, M, n 的超几何分布,记为 X ∼ H ( N , M , n ) X \sim H(N, M, n) XH(N,M,n).

2.3 连续性随机变量的概率密度公式 重要程度:五星

概率密度的定义和性质

概率密度的定义:

设随机变量X分布函数为 F ( x ) F(x) F(x), 存在非负可积函数 f ( x ) ≥ 0 f(x) \geq 0 f(x)0 ( − ∞ < x < + ∞ -\infty < x < +\infty <x<+), 使得对于任意实数 x x x
F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t )   d t , \color{red}F(x) = P\{X \leq x\} = \int_{-\infty}^{x} f(t) \, dt, F(x)=P{Xx}=xf(t)dt,
则称X为连续型随机变量,函数 f ( x ) f(x) f(x)称为X的概率密度函数(简称概率密度)。

概率密度的性质:

1. 非负性: f ( x ) ≥ 0. f(x) \geq 0. f(x)0.
2. 规范性: ∫ − ∞ + ∞ f ( x )   d x = 1. \int_{-\infty}^{+\infty} f(x) \, dx = 1. +f(x)dx=1.

分布函数与概率密度的关系

分布函数: F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t )   d t . F(x) = P\{X \leq x\} = \int_{-\infty}^{x} f(t) \, dt. F(x)=P{Xx}=xf(t)dt.

几何意义

1. 连续型随机变量X的分布函数 F ( x ) F(x) F(x)是连续函数,因此对于任何实数a,有 P { X = a } = 0. P\{X = a\} = 0. P{X=a}=0.
2. 对于任意实数a和b ( a < b a < b a<b), 有 P { a < X ≤ b } = ∫ a b f ( x )   d x . P\{a < X \leq b\} = \int_{a}^{b} f(x) \, dx. P{a<Xb}=abf(x)dx.
3. 在 f ( x ) f(x) f(x)的连续点处,有 F ′ ( x ) = f ( x ) . F'(x) = f(x). F(x)=f(x).

例题

设随机变量X的概率密度为
f ( x ) = c e − x 2 , − ∞ < x < + ∞ , f(x) = ce^{-x^2}, \quad -\infty < x < +\infty, f(x)=cex2,<x<+,
求常数c.

【解析】

由规范性条件,
1 = ∫ − ∞ + ∞ f ( x )   d x = ∫ − ∞ + ∞ c e − x 2   d x = c π , 1 = \int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{+\infty} ce^{-x^2} \, dx = c\sqrt{\pi}, 1=+f(x)dx=+cex2dx=cπ ,
c = 1 π . c = \frac{1}{\sqrt{\pi}}. c=π 1.

有关事件的概率

  1. f ( x ) f(x) f(x)为连续型随机变量 x x x的密度函数,则对任意
    两个实数 a a a b ( a < b ) b(a<b) b(a<b),有
    P { a < X ≤ b } = P { X ≤ b } − P { X ≤ a } = F ( b ) − F ( a ) = ∫ − ∞ b f ( x ) d x − ∫ − ∞ a f ( x ) d x = ∫ a b f ( x ) d x P\{a<X\leq b\}=P\{X\leq b\}-P\{X\leq a\}=F(b)-F(a)\\ =\int_{-\infty}^bf(x)dx-\int_{-\infty}^af(x)dx=\int_a^bf(x)dx P{a<Xb}=P{Xb}P{Xa}=F(b)F(a)=bf(x)dxaf(x)dx=abf(x)dx

  2. 连续型随机变量 X X X取某一点值的概率为零 , 即
    P { X = a } = 0 , a ∈ R P\{X=a\}=0,a\in R P{X=a}=0,aR

事实上
P { X = a } = P { X ≤ a } − lim ⁡ x → a − P { X ≤ x } = F ( a ) − lim ⁡ x → a − F ( x ) = 0 \begin{aligned} P\{X=a\}& =P\{X\leq a\}-\lim_{x\to a^-}P\{X\leq x\} \\ &=F(a)-\lim_{x\to a^-}F(x)=0 \end{aligned} P{X=a}=P{Xa}xalimP{Xx}=F(a)xalimF(x)=0

  1. P { X < x } = P { X ≤ x } = F ( x ) P\{X<x\}=P\{X\leq x\}=F(x) P{X<x}=P{Xx}=F(x)
  2. P { X > x } = P { X ≥ x } = 1 − F ( x ) = 1 − ∫ − ∞ x f ( t ) d t = ∫ x + ∞ f ( t ) d t P\{X>x\}=P\{X\geq x\}=1-F(x) \\ =1-\int_{-\infty}^{x}f(t)dt=\int_{x}^{+\infty}f(t)dt P{X>x}=P{Xx}=1F(x)=1xf(t)dt=x+f(t)dt
  3. P { a < X ≤ b } = P { a < X < b } = P { a ≤ X ≤ b } = P { a ≤ X < b } = ∫ a b f ( x ) d x P\{a<X\leq b\}{=}P\{a<X<b\}{=}P\{a\leq X\leq b\} \\ =P\{a\leq X<b\}=\int_a^bf(x)dx P{a<Xb}=P{a<X<b}=P{aXb}=P{aX<b}=abf(x)dx
  4. 对任意 x ∈ R , 有 \text{对任意}x\in\mathbb{R},\text{有} 对任意xR, P { x − Δ x < X ≤ x } = ∫ x − Δ x x f ( t ) d t = f ( ξ ) Δ x ( x − Δ x ≤ ξ ≤ x ) P\{x-\Delta x<X\leq x\}=\int_{x-\Delta x}^xf(t)dt=f(\xi)\Delta x\left(x-\Delta x\leq\xi\leq x\right) P{xΔx<Xx}=xΔxxf(t)dt=f(ξ)Δx(xΔxξx) 积分中值定理

常见连续型随机变量的分布

均匀分布

X ∼ U ( a , b ) , f ( x ) = { 1 b − a , a < x < b , 0 , 其他 X \sim U(a,b), \quad f(x) = \left\{ \begin{array}{cc} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{其他} \end{array} \right. XU(a,b),f(x)={ba1,0,a<x<b,其他

均匀分布的分布函数为 F ( x ) = { 0 x < a x − a b − a a ≤ x ≤ b 1 x > b \begin{aligned}&\text{均匀分布的分布函数为}\\&F(x)=\begin{cases}\begin{aligned}\mathbf{0}&x<a\\\frac{x-a}{b-a}&a\leq x\leq b\\1&x>b\end{aligned}&\end{cases}\end{aligned} 均匀分布的分布函数为F(x)= 0baxa1x<aaxbx>b

均匀分布的图像

图像如下:黄色曲线为PDF, 橙色为CDF。 a=-5, b=5

例题

例2 某公共汽车站从上午7时起,每15分钟来一班车,即7:0 0 , 7 : 15 , 7 : 30 , 7 : 45 0,7{:}15,7{:}30,7{:}45 0,7:15,7:30,7:45 等时刻有汽车到达此站,如果乘客到达此站时间 X X X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率。

【解析】

以7:00为起点 0, 以分为单位,依题意 X ∼ U ( 0 , 30 ) , f ( x ) = { 1 30 , 0 < x < 30 0 , 其它 \begin{gathered} \text{以7:00为起点 0, 以分为单位,依题意} \\ X\sim U(0,30), \\ f(x)=\begin{cases}\dfrac{1}{30},&0<x<30\\0,&\text{其它}\end{cases} \end{gathered} 7:00为起点 0, 以分为单位,依题意XU(0,30),f(x)= 301,0,0<x<30其它
为使候车时间少于 5 分钟,乘客必须在 7:10 到7:15 之间,或在 7:25 到 7:30 之间到达车站,故所

P { 10 < X < 15 } + P { 25 < X < 30 } P\{10<X<15\}+P\{25<X<30\} P{10<X<15}+P{25<X<30}

= ∫ 10 15 1 30 d x + ∫ 25 30 1 30 d x = 1 3 =\int_{10}^{15}\frac1{30}dx+\int_{25}^{30}\frac1{30}dx=\frac13 =1015301dx+2530301dx=31
即乘客候车时间少于5分钟的概率是 1/3.

指数分布

X ∼ E ( λ ) , f ( x ) = { λ e − λ x , x > 0 , 0 , x ≤ 0. X \sim E(\lambda), \quad f(x) = \left\{ \begin{array}{cc} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \leq 0. \end{array} \right. XE(λ),f(x)={λeλx,0,x>0,x0.
易求得X的分布函数

F ( x ) = ∫ − ∞ x f ( t ) d t = { 1 − e − λ x x > 0 0 x ≤ 0 F(x)=\int_{-\infty}^xf(t)dt=\begin{cases}1-e^{-\lambda x}&x>0\\0&x\leq0&\end{cases} F(x)=xf(t)dt={1eλx0x>0x0

设 a > 0 , X ∼ E ( λ ) P { X > α } = 1 − F ( a ) = e − λ a \color{red}{\text{设}a>0,X\sim E(\lambda)}\quad P\{X>\alpha\}=1-F(a)=e^{-\lambda a} a>0,XE(λ)P{X>α}=1F(a)=eλa

指数分布的图像

图像如下:黄色曲线为PDF, 橙色为CDF。 λ = 3 \lambda = 3 λ=3

例题

某保险公司想开展一种新的寿险业务,被保险人需一次性缴纳保费1000元,若被保险人在10年内死亡,保险公司将赔负5000元,假设人的寿命服从参数为1/65的指数分布.试帮保险公司做出决策

【解析】

假设某人的寿命为 X X X X ∼ E ( λ ) , λ = 1 / 65 X\sim E(\lambda),\lambda=1/65 XE(λ),λ=1/65 假设某人投保时年龄为S岁
则此人再活10年以上的概率为

P { X > s + 10 ∣ X > s } = P { X > s + 10 ⋂ X > s } P { X > s } P\{X>s+10\mid X>s\}=\frac{P\{X>s+10\bigcap X>s\}}{P\{X>s\}} P{X>s+10X>s}=P{X>s}P{X>s+10X>s}
= P { X > s + 10 } P { X > s } = e − λ ( s + 10 ) e − λ s = e − 10 λ = 0.8574 =\frac{P\{X>s+10\}}{P\{X>s\}}=\frac{e^{-\lambda(s+10)}}{e^{-\lambda s}}=e^{-10\lambda}=0.8574 =P{X>s}P{X>s+10}=eλseλ(s+10)=e10λ=0.8574
因此,被保险人在10年内死亡的概率为 1 − P { X > s + 10 ∣ X > s } = 1 − 0.8574 = 0.1426 1-P\{X>s+10\mid X>s\}=1-0.8574=0.1426 1P{X>s+10X>s}=10.8574=0.1426

所以保险公司对该被保险人的预期收益为 1000 − 0.1426 ÷ 5000 = 287 1000-0.1426\div5000=287 10000.1426÷5000=287(元)

结论:保险公司可以开展这种保险业务。

一般化
P { X > s + 10 ∣ X > s } = e − 10 λ = P { X > 10 } P\{X>s+10\mid X>s\}=e^{-10\lambda}=P\{X>10\} P{X>s+10X>s}=e10λ=P{X>10} P { X > s + t ∣ X > s } = e − t λ = P { X > t } P\{X>s+t\mid X>s\}=e^{-t\lambda}=P\{X>t\} P{X>s+tX>s}=etλ=P{X>t}
在已活s年的基础上,再活 t t t年的概率等于寿命大于 t t t年的概率。

正态分布

正态分布的公式

X ∼ N ( μ , σ 2 ) , f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , ( − ∞ < x < + ∞ ) . X \sim N(\mu,\sigma^2), \quad f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad (-\infty < x < +\infty). XN(μ,σ2),f(x)=2π σ1e2σ2(xμ)2,(<x<+).
特别地, X ∼ N ( 0 , 1 ) , φ ( x ) = 1 2 π e − x 2 2 X \sim N(0,1), \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} XN(0,1),φ(x)=2π 1e2x2.

正态分布随机变量的线性组合仍然是一个正态分布随机变量。

正态分布的图像

图像如下:黄色曲线为PDF, 橙色为CDF。 μ = 2 \mu = 2 μ=2, σ = 1.5 \sigma=1.5 σ=1.5

正态分布

正态分布的特性
  1. 钟形曲线:正态分布的图像是一个对称的钟形曲线,称为高斯曲线。

  2. 对称性:曲线关于平均值(或期望值) μ \mu μ 对称。这意味着分布的左半部分是分布右半部分的镜像。

  3. 单峰性:曲线在平均值处达到最高点,即平均值同时也是分布的众数和中位数。

  4. 均值和标准差:正态分布由两个参数完全确定:均值 μ \mu μ 和标准差 σ \sigma σ。均值决定了分布的中心位置,标准差决定了分布的宽度。标准差越大,曲线越宽且不那么高;标准差越小,曲线越窄且更高。

  5. 分布的面积:正态分布曲线下的总面积等于1,这代表了所有可能结果的概率之和。

  6. 经验法则

    • 约68%的数据落在均值的一个标准差范围内( μ \mu μ - σ \sigma σ) 到 ( μ \mu μ + σ \sigma σ))。
    • 约95%的数据落在均值的两个标准差范围内( μ \mu μ - 2 σ \sigma σ) 到 ( μ \mu μ+ 2 σ \sigma σ)。
    • 约99.7%的数据落在均值的三个标准差范围内( μ \mu μ - 3 σ \sigma σ) 到 ( μ \mu μ + 3 σ \sigma σ)。
  7. 尾部性质:正态分布的尾部无限延伸且永远不会触及水平轴,但是随着远离均值,曲线越来越靠近水平轴,表示极端值出现的概率非常小。

【例1】
设随机变量 ξ \xi ξ 在区间 (1,6) 上服从均匀分布,则方程 x 2 + ξ x + 1 = 0 x^2 + \xi x + 1 = 0 x2+ξx+1=0 有实根的概率是?
【解析】
设事件 A = { 方程有实根 } \mathcal{A} = \{\text{方程有实根}\} A={方程有实根}, 则
P ( A ) = P { ξ 2 ≥ 4 } = P { ξ ≥ 2 } + 6 − 2 6 − 1 = 0.8. P(\mathcal{A}) = P\{\xi^2 \geq 4\} = P\{\xi \geq 2\} + \frac{6-2}{6-1} = 0.8. P(A)=P{ξ24}=P{ξ2}+6162=0.8.

【例2】
设随机变量 Y \mathcal{Y} Y 服从参数为1的指数分布,a为常数且大于零,求 P { Y ≤ a + 1 ∣ Y > a } P\{Y \leq a+1 | Y > a\} P{Ya+1∣Y>a}.
【解析】
P { Y ≤ a + 1 ∣ Y > a } = P { Y > a , Y ≤ a + 1 } P { Y > a } = ∫ a a + 1 f ( y ) d y ∫ a + ∞ f ( y ) d y = 1 − 1 e . P\{Y \leq a + 1 | Y > a\} = \frac{P\{Y > a, Y \leq a + 1\}}{P\{Y > a\}} = \frac{\int_{a}^{a+1} f(y)dy}{\int_{a}^{+\infty} f(y)dy} = 1 - \frac{1}{e}. P{Ya+1∣Y>a}=P{Y>a}P{Y>a,Ya+1}=a+f(y)dyaa+1f(y)dy=1e1.

【例3】
设随机变量X的概率密度 f ( x ) = A e − x 2 + x ( − ∞ < x < ∞ ) f(x) = Ae^{-x^2 + x} (-\infty < x < \infty) f(x)=Aex2+x(<x<), 求A.
【解析】
由于
f ( x ) = A e − x 2 + x = A e − ( x 2 − x + 1 4 ) + 1 4 = A e 1 4 ⋅ e − ( x − 1 2 ) 2 2 ⋅ 1 2 . f(x) = Ae^{-x^2 + x} = Ae^{- (x^2 - x + \frac{1}{4}) + \frac{1}{4}} = Ae^{\frac{1}{4}} \cdot e^{-\frac{(x - \frac{1}{2})^2}{2 \cdot \frac{1}{2}}}. f(x)=Aex2+x=Ae(x2x+41)+41=Ae41e221(x21)2.

对比正态分布的概率密度 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2, 可以得到 μ = 1 2 , σ 2 = 1 2 \mu = \frac{1}{2}, \sigma^2 = \frac{1}{2} μ=21,σ2=21, 且
A e 1 4 = 1 2 π σ = 1 2 π 1 2 = 1 π , Ae^{\frac{1}{4}} = \frac{1}{\sqrt{2\pi}\sigma} = \frac{1}{\sqrt{2\pi}\sqrt{\frac{1}{2}}} = \frac{1}{\sqrt{\pi}}, Ae41=2π σ1=2π 21 1=π 1,
所以 A = e − 1 4 π . A = \frac{e^{-\frac{1}{4}}}{\sqrt{\pi}}. A=π e41.

  • 42
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值