第三章 多维随机变量及其分布

3.1 二维随机变量及其分布函数

二维随机变量及其分布的分布函数

二维随机变量及其分布的分布函数描述了在给定阈值下,随机变量的联合概率。具体来说,对于二维随机变量 ( X , Y ) (X, Y) (X,Y),其分布函数 F ( x , y ) F(x, y) F(x,y) 定义如下:

F ( x , y ) = P ( { X ≤ x , Y ≤ y } ) F(x, y) = P(\{X \leq x, Y \leq y\}) F(x,y)=P({Xx,Yy})

这里, F ( x , y ) F(x, y) F(x,y) 表示随机变量 X X X 小于或等于 x x x 且随机变量 Y Y Y 小于或等于 y y y 的概率。这个函数提供了在给定的 x x x y y y 阈值下,两个随机变量联合出现的概率度量。

  • 性质
    • x → ∞ x \rightarrow \infty x y → ∞ y \rightarrow \infty y 时, F ( x , y ) → 1 F(x, y) \rightarrow 1 F(x,y)1
    • x → − ∞ x \rightarrow -\infty x y → − ∞ y \rightarrow -\infty y 时, F ( x , y ) → 0 F(x, y) \rightarrow 0 F(x,y)0
    • F ( x , y ) F(x, y) F(x,y) x x x y y y 上单调递增。

3.2 二维离散型随机变量

二维离散型随机变量的边缘概率分布

对于二维离散型随机变量 ( X , Y ) (X, Y) (X,Y),其联合概率分布可以表示为一个表格,其中 X X X 的取值列举在行上, Y Y Y 的取值列举在列上。给定的表格显示了这些随机变量的联合概率分布:

X ∖ Y y 1 y 2 ⋯ y j ⋯ x 1 p 11 p 12 ⋯ p 1 j ⋯ x 2 p 21 p 22 ⋯ p 2 j ⋯ ⋮ ⋮ ⋮ ⋮ x i p i 1 p i 2 ⋯ p i j ⋯ ⋮ ⋮ ⋮ ⋮ \begin{array}{c|ccccc} X\setminus Y & y_1 & y_2 & \cdots & y_j & \cdots \\ \hline x_1 & p_{11} & p_{12} & \cdots & p_{1j} & \cdots \\ x_2 & p_{21} & p_{22} & \cdots & p_{2j} & \cdots \\ \vdots & \vdots & \vdots & & \vdots \\ x_i & p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots \\ \vdots & \vdots & \vdots & & \vdots \end{array} XYx1x2xiy1p11p21pi1y2p12p22pi2yjp1jp2jpij

在这个表格中, p i j p_{ij} pij 表示随机变量 X X X 取值 x i x_i xi Y Y Y 取值 y j y_j yj 的概率。

X X X 的边缘概率分布 是通过对每行的概率求和来计算的,表示为:

p i . = P { X = x i } = ∑ j P { X = x i , Y = y j } = ∑ j p i j , i = 1 , 2 , . . . \begin{aligned} &\mathrm{p_{i.}=P\{X=x_{i}\}=} \\ &\sum_j\mathrm{P\{X=x_i, Y=y_j\} = \sum_j p_{ij},} \\ &\mathrm{i=1,2,...} \end{aligned} pi.=P{X=xi}=jP{X=xi,Y=yj}=jpij,i=1,2,...

Y Y Y 的边缘概率分布 则是通过对每列的概率求和来计算的,表示为:

p . j = P { Y = y j } = ∑ i P { X = x i , Y = y j } = ∑ i p i j , \begin{aligned} &\mathrm{p_{.j}=P\{Y = y_{j}\}=} \\ &\sum_i\mathrm{P\{X=x_i, Y = y_j\} = \sum_i p_{ij},} \\ \end{aligned} p.j=P{Y=yj}=iP{X=xi,Y=yj}=ipij,

这些边缘概率分布反映了每个随机变量的概率分布,而不考虑另一个变量的影响。

例题

( X , Y ) \mathrm{( X, Y) } (X,Y)的概率分布为

X ∖ Y 1 2 3 − 1 1 3 a 6 1 4 1 0 1 4 a 2 \begin{array}{|c|c|c|c|} \hline X \setminus Y & 1 & 2 & 3 \\ \hline -1 & \frac{1}{3} & \frac{a}{6} & \frac{1}{4} \\ \hline 1 & 0 & \frac{1}{4} & a^2 \\ \hline \end{array} XY11131026a41341a2
求 a,并求边缘概率分布.

解析

根据概率分布的性质,所有概率值之和等于1,我们可以列出如下等式:

∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum_{i=1}^{\infty}\sum_{j=1}^{\infty}p_{ij} = 1 i=1j=1pij=1

给定的概率分布表可得:

1 3 + a 6 + 1 4 + 1 4 + a 2 = 1 \frac{1}{3} + \frac{a}{6} + \frac{1}{4} + \frac{1}{4} + a^2 = 1 31+6a+41+41+a2=1

化简后,我们得到关于 a a a 的一元二次方程:

6 a 2 + a − 1 = ( 3 a − 1 ) ( 2 a + 1 ) = 0 6a^2 + a - 1 = (3a - 1)(2a + 1) = 0 6a2+a1=(3a1)(2a+1)=0

解这个方程,我们得到:

a = 1 3 , a = − 1 2 a = \frac{1}{3}, \quad a = -\frac{1}{2} a=31,a=21

由于概率值不能为负,因此只有 a = 1 3 a = \frac{1}{3} a=31 是可接受的解。

边缘分布概率:
X − 1 1 p i ∙ 23 36 13 36 \begin{array}{|c|c|c|} \hline X&-1&1\\ \hline \\p_{i\bullet}&\frac{23}{36}&\frac{13}{36}\\ \hline \end{array} Xpi1362313613
Y 1 2 3 p i ∗ 1 3 11 36 13 36 \begin{array}{|c|c|c|c|c|} \hline Y&1&2&3\\ \hline \\p_{i*}&\frac{1}{3}&\frac{11}{36}&\frac{13}{36}\\ \hline \end{array} Ypi1312361133613

二维离散型随机变量的条件概率分布和独立性

对于二维离散型随机变量 ( X , Y ) (X, Y) (X,Y),条件概率分布描述了在已知一个随机变量的值的条件下,另一个随机变量取特定值的概率。条件概率分布的公式如下:

条件概率公式

P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p . j , P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i . , \begin{aligned} &\mathrm{P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{.j}},} \\ &\mathrm{P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i.}},} \\ \end{aligned} P{X=xi∣Y=yj}=P{Y=yj}P{X=xi,Y=yj}=p.jpij,P{Y=yj∣X=xi}=P{X=xi}P{X=xi,Y=yj}=pi.pij,

其中 p i j p_{ij} pij ( X , Y ) (X, Y) (X,Y) 同时取值 ( x i , y j ) (x_i, y_j) (xi,yj) 的联合概率, p . j p_{.j} p.j Y Y Y 取值 y j y_j yj 的边缘概率, p i . p_{i.} pi. X X X 取值 x i x_i xi 的边缘概率。

独立性

随机变量 X X X Y Y Y 是独立的,如果对于所有的 i i i j j j,下面的等式成立:

P { X = x i , Y = y j } = P { X = x i } ⋅ P { Y = y j } P\{X = x_i, Y = y_j\} = P\{X = x_i\} \cdot P\{Y = y_j\} P{X=xi,Y=yj}=P{X=xi}P{Y=yj}

这意味着两个随机变量的联合概率等于各自的边缘概率的乘积。如果这个条件对所有的 i , j i, j i,j 都成立,那么我们可以说 X X X Y Y Y 是相互独立的。

例题

( X , Y ) \mathrm{( X, Y) } (X,Y)的概率分布为
X ∖ Y 0 1 2 0 1 4 1 6 1 8 1 1 4 1 8 1 12 \begin{array}{|c|c|c|c|} \hline X \setminus Y & 0 & 1 & 2 \\ \hline 0 & \frac{1}{4} & \frac{1}{6} & \frac{1}{8} \\ \hline 1 & \frac{1}{4} & \frac{1}{8} & \frac{1}{12} \\ \hline \end{array} XY010414116181281121
P P P { Y Y Y= 1| X X X= 1}

解析

P { Y = 1 ∣ X = 1 } = P { X = 1 , Y = 1 } P { X = 1 } = 1 8 1 4 + 1 8 + 1 12 = 3 11 \begin{aligned} &\text{P}\left\{\text{Y}=1\left|\text{X}=1\right.\right\} \\ &=\frac{\mathrm{P\left\{X=1,Y=1\right\}}}{\mathrm{P\left\{X=1\right\}}} \\ &=\frac{\frac18}{\frac14+\frac18+\frac1{12}}=\frac3{11} \end{aligned} P{Y=1X=1}=P{X=1}P{X=1,Y=1}=41+81+12181=113

二维离散型随机变量的概率分布定义

( X , Y ) \mathrm{( X, Y) } (X,Y)的所有可能取值为有限对数或者无限可列对

数,则称 ( X , Y ) \mathrm{( X, Y) } (X,Y)为二维离散型随机的概率分布,
X ∖ Y y 1 y 2 ⋯ y j ⋯ x 1 p 11 p 12 ⋯ p 1 j ⋯ x 2 p 21 p 22 ⋯ p 2 j ⋯ ⋮ ⋮ ⋮ ⋮ x i p i 1 p i 2 ⋯ p i j ⋮ ⋮ ⋮ ⋮ \begin{array}{c|ccccc}X\setminus Y&y_1&y_2&\cdots&y_j&\cdots\\\hline x_1&p_{11}&p_{12}&\cdots&p_{1j}&\cdots\\x_2&p_{21}&p_{22}&\cdots&p_{2j}&\cdots\\\vdots&\vdots&\vdots&&\vdots\\x_i&p_{i1}&p_{i2}&\cdots&p_{ij}\\\vdots&\vdots&\vdots&&\vdots\end{array} XYx1x2xiy1p11p21pi1y2p12p22pi2yjp1jp2jpij

其中P  { X = x i , Y = y j } = p i j   , i , j = 1 , 2 , ⋯ 性质 ( 1 ) p i j ⁡ ≥ 0 ; ( 2 ) ∑ i ∑ j p i j ⁡ = 1 \begin{aligned} &\text{其中P }\{\mathrm{X=x_i,Y=y_j\}=p_{ij}~,i,j=} \\ &1,2,\cdots \\ &\text{性质} \\ &\begin{array}{l}(1)\operatorname{p_{ij}}\geq0;\\(2)\sum_\mathrm{i}\sum_\mathrm{j}\operatorname{p_{ij}}=1\end{array} \end{aligned} 其中{X=xi,Y=yj}=pij ,i,j=1,2,性质(1)pij0;(2)ijpij=1

3.3 二维连续型随机变量

二维连续型随机变量的边缘概率概率密度

对于连续型随机变量 ( X , Y ) (X, Y) (X,Y),其联合概率密度函数为 f ( x , y ) \mathrm{f(x, y)} f(x,y)。边缘概率密度函数是通过对另一个变量在其所有可能值上进行积分来得到的。

X X X 的边缘概率密度,记作 f X ( x ) \mathrm{f_X(x)} fX(x),是通过对 Y Y Y 的所有可能值进行积分来计算的:

f X ( x ) = ∫ − ∞ + ∞ f ( x , y )   d y \mathrm{f_X(x)} = \int_{-\infty}^{+\infty} f(x, y) \, dy fX(x)=+f(x,y)dy

Y Y Y 的边缘概率密度,记作 f Y ( y ) \mathrm{f_Y(y)} fY(y),是通过对 X X X 的所有可能值进行积分来计算的:

f Y ( y ) = ∫ − ∞ + ∞ f ( x , y )   d x \mathrm{f_Y(y)} = \int_{-\infty}^{+\infty} f(x, y) \, dx fY(y)=+f(x,y)dx

边缘概率密度函数使我们能够分析单个随机变量的概率行为,忽略另一个随机变量的影响。

二维连续型随机变量的条件概率概率密度

给定二维随机变量 ( X , Y ) (X, Y) (X,Y) 的概率密度函数 f ( x , y ) \mathrm{f(x, y)} f(x,y),我们可以定义条件概率密度如下:

  1. 对于给定的实数 y y y,如果边缘概率密度 f Y ( y ) > 0 \mathrm{f_Y(y) > 0} fY(y)>0,则 X X X 在给定 Y = y Y=y Y=y 的条件下的条件概率密度函数为

f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) \mathrm{f}_{X|Y}(x|y) = \frac{\mathrm{f(x,y)}}{\mathrm{f_Y(y)}} fXY(xy)=fY(y)f(x,y)

这里, f X ∣ Y ( x ∣ y ) \mathrm{f}_{X|Y}(x|y) fXY(xy) 描述了在已知 Y = y Y=y Y=y 的条件下,随机变量 X X X 取特定值 x x x 的概率密度。

  1. 对于给定的实数 x x x,如果边缘概率密度 f X ( x ) > 0 \mathrm{f_X(x) > 0} fX(x)>0,则 Y Y Y 在给定 X = x X=x X=x 的条件下的条件概率密度函数为

f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) \mathrm{f}_{Y|X}(y|x) = \frac{\mathrm{f(x,y)}}{\mathrm{f_X(x)}} fYX(yx)=fX(x)f(x,y)

同样, f Y ∣ X ( y ∣ x ) \mathrm{f}_{Y|X}(y|x) fYX(yx) 描述了在已知 X = x X=x X=x 的条件下,随机变量 Y Y Y 取特定值 y y y 的概率密度。

这些条件概率密度函数是在给定一个随机变量值的条件下,理解另一个随机变量行为的重要工具。

二维连续型随机变量的概率密度

( 1 )   f ( x , y ) ≥ 0 ; ( 2 )   ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1. \begin{array}{l}\text{}\\\mathrm{(1)~f\left(x,y\right)\geq0;}\\\mathrm{(2)~\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f\left(x,y\right)dxdy=1.}\end{array} (1) f(x,y)0;(2) ++f(x,y)dxdy=1.

二维连续型随机变量的独立性

f ( x , y ) = f X ( x ) f Y ( y ) 则称随机变量X和Y相互 独立 \begin{aligned} &\text{} \\ &\mathrm{f\left(x,y\right)=f_X\left(x\right)f_Y\left(y\right)}\text{则称随机变量X和Y相互} \\ &\text{独立} \end{aligned} f(x,y)=fX(x)fY(y)则称随机变量XY相互独立

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值