pytorch-tensorboard的基本用法二——add_image()

pytorch-tensorboard的基本用法二——add_image()

1、add_image简介和注意

在这里插入图片描述
注意:
(1) dataformats, 需要先观察再填写,默认的为CHW,有时不一定正确
(2) 使用PIL.Image打开的图片类型是’PIL.JpegImagePlugin.JpegImageFile’
,与要求的tensor 或者numpy类型不符合
(3) global step 是记录每一步操作的标识符

2、代码实现

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

if __name__ == '__main__':
    writer = SummaryWriter("logs")
    image_path = "data/hymenoptera_data/train/bees/16838648_415acd9e3f.jpg"
    img_PIL = Image.open(image_path)
    # print(type(img_PIL)) 
    img_array = np.array(img_PIL)
    print(img_array.shape)
    print(type(img_array))
    writer.add_image("test",img_array, 2, dataformats='HWC')

    writer.close()

3、结果

tag 相同的可以通过拖动上方的按钮来观察

在这里插入图片描述
在这里插入图片描述

### TensorBoardX 使用教程 #### 安装依赖库 为了使用 `TensorBoardX` 进行可视化,需先安装 TensorFlowTensorBoardX。推荐通过 conda 或 pip 来完成安装过程[^3]。 对于 Conda 用户来说: ```bash conda install tensorflow pip install tensorboardX ``` 而对于 Pip 用户,则可以直接运行: ```bash pip install tensorflow tensorboardX ``` 确保预备环境已正确配置完毕之后再继续下一步操作。 #### 基本功能演示 下面是一个简单的例子来说明如何利用 `TensorBoardX` 记录训练过程中的一些指标并将其显示出来[^1]: 假设有一个 PyTorch 的模型正在被训练,在每次迭代结束时希望记录损失函数值以及准确率等信息到 TensorBoard 中去查看变化趋势。 ```python from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter('runs/experiment_1') # 创建一个新的日志文件夹用于存储本次实验的数据 for n_iter in range(100): writer.add_scalar('Loss/train', np.random.rand(), n_iter) # 添加单个数值型数据点 (标签, 数值, 步数) writer.add_scalars('Training and Validation Loss',{'training ':np.random.rand(), 'validation':np.random.rand()},n_iter) images = np.zeros((16, 3, 32, 32)) # 构造一批假图像数据 img_grid = torchvision.utils.make_grid(images) # 将这批图片组合成网格形式以便于展示 writer.add_image('four_fashion_mnist_images', img_grid, 0) # 向事件文件写入一张或多张图像 writer.close() # 关闭 writer 对象以保存所有更改 ``` 这段代码创建了一个名为 "experiment_1" 的新目录,并向其中添加了几种不同类型的信息——标量、多组标量对比图和一组图像。这些都可以在启动 TensorBoard Web 应用程序后浏览。 #### 高级特性探索 除了基本的功能外,`TensorBoardX` 提供了许多额外的方法如 `add_audio`, `add_figure` 等,允许用户更灵活地处理各种类型的多媒体内容或自定义图形对象。当遇到特定需求时,建议查阅官方文档获取更多细节和支持[^2]。 另外值得注意的是,有时可能会碰到某些情况下浏览器加载嵌入式组件失败的问题;此时应考虑升级至最新版 TensorBoard (>1.12.0),因为旧版本可能存在兼容性缺陷。同时记得清理缓存或者重启服务端口以排除潜在干扰因素的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值