python数学建模之用scipy.optimize.minimize解决高次非线性规划问题

本文介绍了如何利用scipy.optimize.minimize函数解决包含二次、三次或高次函数约束条件的优化问题。通过示例展示了如何定义目标函数、约束条件和参数范围,最终找到最小值及对应的变量取值。此外,还提到了无约束情况下的最优化求解。
摘要由CSDN通过智能技术生成

在实际的数学建模应用中,我们会遇到很多约束条件是二次的,三次的或者是高次函数的情况,这样用 optimize.linprog()来解决就显得不适用了,因此我们使用scipy.optimize下得minimize函数来解决这个问题。

官方文档:
SciPy API referencehttps://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

fun:是目标函数,是一个函数形式传入,

 x0:初步猜测。大小为 (n,) 的实数元素数组,其中 n 是自变量的数量。

constraints:约束定义。仅适用于COBYLA,SLSQP和trust-constr.传入字典类型的数据,其数据是约束条件,可以是等式,也可以是不等式约束。

bounds:参数范围限定,即限定求解的x的取值范围。

求解约束条件下得最小值:

导入头文件,建立目标函数:

from scipy import optimize

f = lambda x: x[0] ** 2 + x[1] **2 + x[2] ** 2 + 8

 建立约束条件函数:

cons = ({'type': 'ineq', 'fun': lambda x: x[0]**2 - x[1] + x[2]**2},
        {'type': 'ineq', 'fun': lambda x: -x[0] - x[1] - x[2]**3 + 20},
        {'type': 'eq', 'fun': lambda x: -x[0] - x[1]**2 + 2},
        {'type': 'eq', 'fun': lambda x: x[1] + 2 * x[2]**2 - 3})

type表示约束条件的等式类型,如ineq是不等式,eq是等式。

初始化x,限定x范围,传入参数:

x=(0,0,0)
bounds=[[0,None],[0,None],[0,None]]

res = optimize.minimize(f, x0=x,bounds=bounds, constraints=cons)

得到结果如下:

 最小值为10.65,x的取值为0.55,1.20,0.94

同时也可以无约束求最值:不传入约束条件即可

res = optimize.minimize(f, x0=x,bounds=bounds)

结果:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值